Field hydroponics assessment of salt tolerance in Cenchrus ciliaris (L.): growth, yield, and maternal effect

2013 ◽  
Vol 64 (6) ◽  
pp. 631 ◽  
Author(s):  
Mónica Ruiz ◽  
Edith Taleisnik

Soil salinity and sodicity have long been major constraints to increasing crop production in many parts of the world. The introduction of salt-tolerant perennial species is one of the most promising alternatives to overcome salinity problems. Cenchrus ciliaris (L.) is a highly drought-tolerant species but there are few available reports on its salt tolerance. The purpose of this work was to assess this trait in two widely used cultivars (Biloela and Texas) and to determine whether cultivation under salinity affected seed germination and plant fitness in the next generation. Trials were performed under field hydroponics conditions. Plants were grown for 5 months in 1000-L PVC boxes containing washed river sand, and were automatically irrigated with a commercial nutrient solution to which NaCl was gradually added to provide to provide average season electrical conductivity (EC) levels of 9, 15, and 19 dS/m. Controls had EC 4 dS/m. Vegetative growth in both cultivars was similarly affected by salinity, and grain yield diminished because of a decreased number of spikelets per plant. Significant growth and yield reductions were registered at EC ~10 dS/m, and growth continued to decrease with a very small slope as salinity increased, indicating that this species has moderate salt tolerance. Salinity decreased seed germination percentage; however, germination was higher in seeds obtained from plants that had been grown under saline conditions for one season. Growth was similar in plants obtained from seeds that originated from non-salinised and salinised plants. These results suggest that persistence of C. ciliaris in saline soils would not be limited by diminishing plant performance but, rather, by grain yield and seed germination.

2021 ◽  
Vol 13 (1) ◽  
pp. 42-50
Author(s):  
Poornima R ◽  
K. Nagendra Prasad ◽  
Srikanth N. Jois

Pranic agriculture (PA) is an ancient farming method where pranic energy improves crop production. Finger millet or Ragi (Eleusine coracana. L) is a major staple millet consumed in India, particularly Karnataka and is a rich source of protein and nutrients. A field study in half-acre was carried out with pranic energy treatment to seed, land and crop and along with control (without energy treatment). The traits of finger millet like plant height (26%), number of productive tillers (35%), no of panicle (54%), number of fingers (13%) and grain yield (44%) were statistically (p < .05) higher over control. Protein content in finger millet straw (4.38 %) and grain (6.13%) was higher in pranic treatment than control (3.5 and 4.75%). Nitrogen and zinc content in millet grain was higher in pranic treatment (980 and 1.96 mg/100g) than control (760 and 1.63 mg/100g). The increase in protein, nitrogen and zinc content of the millet grain and straw will help to improve the quality of produce for consumption by cattle and humans.  Increase in straw and grain yield will help to improve the economy of the farmer.  Further studies are needed to know the actual mechanisms involved in the growth and yield improvement of finger millet. And, also in-depth studies are necessary to address the reasons behind the variation in nutrients accumulation in straw and grain. 


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 480 ◽  
Author(s):  
Bushra Niamat ◽  
Muhammad Naveed ◽  
Zulfiqar Ahmad ◽  
Muhammad Yaseen ◽  
Allah Ditta ◽  
...  

Soil salinity and sodicity are among the main problems for optimum crop production in areas where rainfall is not enough for leaching of salts out of the rooting zone. Application of organic and Ca-based amendments have the potential to increase crop yield and productivity under saline–alkaline soil environments. Based on this hypothesis, the present study was conducted to evaluate the potential of compost, Ca-based fertilizer industry waste (Ca-FW), and Ca-fortified compost (Ca-FC) to increase growth and yield of maize under saline–sodic soil conditions. Saline–sodic soil conditions with electrical conductivity (EC) levels (1.6, 5, and 10 dS m−1) and sodium adsorption ratio (SAR) = 15, were developed by spiking soil with a solution containing NaCl, Na2SO4, MgSO4, and CaCl2. Results showed that soil salinity and sodicity significantly reduced plant growth, yield, physiological, and nutrient uptake parameters. However, the application of Ca-FC caused a remarkable increase in the studied parameters of maize at EC levels of 1.6, 5, and 10 dS m−1 as compared to the control. In addition, Ca-FC caused the maximum decrease in Na+/K+ ratio in shoot up to 85.1%, 71.79%, and 70.37% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment. Moreover, nutrient uptake (NPK) was also significantly increased with the application of Ca-FC under normal as well as saline–sodic soil conditions. It is thus inferred that the application of Ca-FC could be an effective amendment to enhance growth, yield, physiology, and nutrient uptake in maize under saline–sodic soil conditions constituting the novelty of this work.


2010 ◽  
Vol 58 (3) ◽  
pp. 239-251
Author(s):  
Z. Berzsenyi ◽  
G. Micskei ◽  
I. Jócsák ◽  
P. Bónis ◽  
E. Sugár

Research indicates that there is considerable potential for a successful switch from high chemical use to lower-input, more sustainable farming practices for maize. The overall objective of the MicroMaize project was to field-test the performance of innovative microbiological management strategies. The effect of microbial consortia on maize growth and grain yield was studied in 2008 and 2009 at Martonvásár (Hungary) in a 50-year-old long-term fertilisation experiment. The experiment was set up in a split-plot design with four replications. The main plots were the fertilisation treatments: A: control, without fertilisation (N 0 P 0 K 0 ), B: N 50 P 24 K 43 , C: N 100 P 48 K 87 , D: N 200 P 96 K 174 , E: N 300 P 144 K 261 . Three microbial inoculation treatments were the sub-plots: C0: control, no microbial consortia, C1: A. lipoferum CRT1 + P. fluorescens Pf153 + G. intraradices JJ 129 , C2: A. lipoferum CRT1 + P. fluorescens F113 + G. intraradices JJ129 . The results indicated that the microbial consortia had no significant effect on maize growth and yield. In the ecophysiological analyses, the microbial consortia were found to have a significant positive effect on the chlorophyll content and on the protein and nitrogen contents of the grain yield in 2009. The long-term results revealed that the mineral fertilisation treatments and the year had a significant influence on the growth, yield and grain quality parameters of maize. The effect of nutrient supplies and year during the vegetative growth phase of maize could be quantified using the mean values of the absolute growth rate (AGR) for maize shoots and roots and with the nutrient stress index calculated from AGR. Further field investigations on productivity and eco-physiological parameters will be needed to estimate the effect of microbial consortia.


HortScience ◽  
1996 ◽  
Vol 31 (5) ◽  
pp. 744a-744
Author(s):  
Rachel Emrick ◽  
D. L. Creech ◽  
G. Bickerstaff

This project tested rates of lignite-activated water (LAW) for its influence on seed germination, cutting propagation, and plant performance. LAW is a product of CAW Industries, Rapid City, S.D. LAW is water-activated by lignite in a process that includes the addition of sulfated castor oil, calcium chloride, magnesium sulfate, sodium meta silicate, and fossilized organics from refined lignite. LAW is reported to improve many plant performance traits. Four rates were used in this study. Seed germination trials indicated no significant differences in germination percentage with LAW applications with the two species tested, Echinacea purpurea and Hibiscus dasycalyx. In a “closed” system, LAW enhanced cutting propagation success of Aster caroliniana, Cuphea micropetala, and Verbena `Homestead Purple', as measured by percent rooting and dry weight of roots produced. Cutting propagation of two woody species, Illicium henryi and Rosa banksiae, was not improved with LAW additions. In the SFASU Arboretum, pansy performance, as measured by plant dry weight, was improved one month after establishment.


Author(s):  
A. K. M. Sajjadul Islam ◽  
Md. Shohel Rana ◽  
Dr. Md. Mazibur Rahman ◽  
Md. Jainul Abedin Mian ◽  
Md. Mezanur Rahman ◽  
...  

Because of using sulphur free fertilizer, rice crop facing tremendous sulphur (S) deficiency throughout the world as well as in Bangladesh. However, farmers of Bangladesh often overlook the importance of sulphur fertilization on rice yield. Therefore, the present study was conducted to investigate the influence of different levels of sulphur on growth, yield attributes and uptake of N, P, K and S by grain and straw of BRRI dhan41 rice variety. The experiment was laid out in randomized complete block design with three replication and eight treatments including control. The result of the study revealed that the highest plant height, panicle length, filled grain was found in T1 (50% RFD of S) treatment, while the utmost number of effective tiller and straw yield was recorded in T5 (150% RFD of S) treatment. Interestingly, maximum grain yield as well as uptake of N, P, K and S by grain and straw was significantly higher in T6 (175% RFD of S) treatment. The highest grain yield of T6 treatment might be due to maximum nutrient use efficiency. However, in all cases control treatment (T0) gave the worst result. The present study clearly indicates that higher rates (175% of the recommended dose) of S along with other fertilizers may be recommended for better growth and yield of BRRI dhan41 in Bangladesh soil.


2020 ◽  
Author(s):  
Harshita Singh ◽  
Suryapal Singh ◽  
V. P.S. Panghal

Coriander is second most important seed spice crop grown for its seed as well as leaves. Among the major yield determining factors, NPK fertilization along with correct supply of water play an important role in the quality and yield aspects of coriander. Since coriander is grown mainly in arid and semi-arid areas, water is one of the main constraints in crop production as these growing areas are deficit in annual rainfall. Coriander grown particularly during winter season requires assured irrigation for successful production. Also, dumping of huge quantity of fertilizers in the soil becomes uneconomical besides polluting the environment. Therefore, application of optimum dose of fertilizers not only increases the yield but also improves the quality of the crop as well as soil. Extensive research work has been reported on irrigation and fertilizer requirement of coriander. Therefore, an attempt is been made to review the information available regarding the irrigation and fertilization studies and their impact on growth, yield and other attributing parameters of coriander.


2018 ◽  
Vol 16 (3) ◽  
pp. 357-365
Author(s):  
Syeda Ariana Ferdous ◽  
Mohammad Noor Hossain Miah ◽  
Mozammel Hoque ◽  
Sazzad Hossain ◽  
Ahmed Khairul Hasan

The effect of lime and fertilizer application, as the management of soil acidity, on the growth and yield of rice cv. BRRI dhan50 was investigated during Aman rice season at the Agronomy Field Laboratory of Sylhet Agricultural University, Bangladesh. The experiment was consisted of two factors namely lime and fertilizer. There were four levels of lime (0, 0.50, 1.00, and 1.50 t ha–1 of CaCO3.MgCO3) and three levels of fertilizers (control, FYM @ 10 t ha–1, and chemical fertilizer @ 100-30-42-4-3-0.4 kg ha–1 of N-P-K-Ca-S-Zn). The experiment was laid out in a randomized complete block design with three replications where the unit plot size was 4.0 m x 2.5 m. Growth parameters, yield components and yield of BRRIdhan 50 rice increased with increasing lime rate in association of fertilizer in acidic soil. The highest grain yield (2.90 t ha–1) was recorded from the application of 1.50 t ha–1 lime and the lowest (2.06 t ha–1) was from control (0t ha–1), irrespective of fertilizer. On the other hand, the best effect of fertilizers on grain yield (3.08 t ha–1) was found with the application of FYM @ 10 t ha–1 and the lowest yield (1.59 t ha–1) was in control. The treatment combination of lime 1.50 t ha–1 and FYM (@ 10 t ha–1 produced the highest grain yield (3.60 t ha–1), which was followed by treatment combination of lime 1.50 t ha–1 and chemical fertilizer @ 100-30-42-4-3-0.4 kg ha–1 of N-P-K-Ca-S-Zn (3.28 t ha–1). Additionally, application of lime and FYM improved the soil fertility and properties of acidic soil for crop production by increasing the pH, organic matter and availability of some essential nutrients. From the study, it was indicated that both FYM and lime could affect to enhance the grain yield of rice in acidic soil. J. Bangladesh Agril. Univ. 16(3): 357–365, December 2018


2013 ◽  
Vol 5 (2) ◽  
pp. 209-212
Author(s):  
MAA Al-Musa ◽  
MA Ullah ◽  
M Moniruzzaman ◽  
MS Islam ◽  
A Mukherjee

A pot experiment was carried at Patuakhali Science and Technology University to study the performance of some BARI wheat varieties under the coastal area of Patuakhali. Four wheat varieties viz. BARI ghom-23, BARI ghom-24, BARI ghom-25 and BARI ghom-26 were planted in the field to evaluate their comparative performance in respect of germination percentage, growth, yield and yield attributing characters. Among the four varieties, BARI ghom-26 showed superior performance irrespective of all parameters studied except total dry matter content (TDM) and yield reduction percentage. Among the BARI varieties, BARI ghom-26 produced greater germination (61.00%) at 13 days judge against to other varieties. The taller plant (47.91 cm), higher LAI (1.84), maximum TDM (17.37 g plant-1) and effective tillers hill-1 (18.08) were also obtained with the similar variety. BARI ghom-26 was also most effective to produce the maximum grains spike-1 (38.52), higher weight of 1000-grains (49.38 g), higher grain (3.35 t ha-1) and straw (8.50 g plant-1) yield and greater HI (4.03%). So, the variety BARI ghom-26 produced the outstanding superiority among the varieties.DOI: http://dx.doi.org/10.3329/jesnr.v5i2.14816 J. Environ. Sci. & Natural Resources, 5(2): 209-212 2012


2013 ◽  
Vol 41 (1) ◽  
pp. 286 ◽  
Author(s):  
Suriyan CHA-UM ◽  
Satjaporn CHANTAWONG ◽  
Chareerat MONGKOLSIRIWATANA ◽  
Muhammad ASHRAF ◽  
Chalermpol KIRDMANEE

Growth and physiological attributes and sugar quality parameters are considered key criteria for screening sugarcane cultivars for salt tolerance. Maximum cane growth and yield were found in a positive check (‘K88-92’) as well as in cv. ‘(A3)AE1-18’ when subjected to salt affected soil. Percent reduction in Fv/Fm, quantum efficiency of PSII (ΦPSII) and water use efficiency (WUE) due to salt stress was considerably low in ‘K88-92’, ‘(A3)AE1-18’ and ‘KK3’ which was associated with very low salt-induced reduction in net photosynthetic rate and growth characters such as shoot length, number of internodes, and internodal length as well as yield traits. In addition, brix, polarlization, fiber, purity and commercial cane sugar (CCS) in ‘(A18)AE2-15’ and ‘(A3)AE1-18’ were well maintained under saline stress. By subjecting the data for various physiological, growth, yield and sugar quality parameters to the Ward’s cluster analysis ‘K88-92’ (positive check), ‘(A3)AE1-18’ and ‘KK3’ were identified as salt tolerant, whereas ‘(A11)AE1-114’ and ‘K97-32’ as salt sensitive.


2017 ◽  
Vol 5 (11) ◽  
pp. 400-413
Author(s):  
Babajide Peter ◽  
OpasinaIfeoluwa ◽  
Ajibola Adijat ◽  
Noah ◽  
Oyedele Temitope ◽  
...  

It is not unreasonable to state that, even before the introduction of organic agriculture, African local farmers have numerous of undocumented environment-friendly, nature-inclined indigenous techniques for boosting soil fertility and enhancing crop yield. However, despite the versatility of indigenous knowledge, setback is always experienced from western science, which tags such knowledge as being non-scientific and not worthy of scholarly engagements. A field experiment was carried out in the year 2013, at the Teaching and Research Farms, LadokeAkintola University of Technology, Ogbomoso, to assess the soil fertility and yield promoting potentials of some indigenous plant species’ botanicals used as pre-planting treatments on different maize varieties. It was a 3 by 5 factorial experiment. The treatments introduced were: Three (3) maize varieties (V1 = ACR-DMR-SR-Y, V2 = Local EM-W and V3 = Suwan Solo Yellow and five (5) other treatments (comprising pre-sowing botanical treatments of: Kigeliaafricana only, Glyphea brevis only, combination of Kigeliaafricana and Glyphea brevis only, NPK fertilizer application (as a reference) and the control (treated with ordinary water only). The trial was laid out in Split Plot in Randomized Complete Block Design (RCBD), replicated three times. Data were collected on growth and yield parameters, and the data collected were analysed using analysis of variance (ANOVA). Means were compared using Duncan Multiple Range Test (DMRT). All the botanical treatments significantly influenced germination, growth, yield and nutrient uptakes of maize, compared to the control. Either of the botanicals tested (with ordinary basal manure application of the pre-existing plant residues on the field), competed effectively with NPK fertilized plants. Hence, since maize responded better to sole treatments of either Kigeliaafricana or Glyphea brevis extracts, irrespective of varieties than the combined treatment of the two botanicals, any of the maize varieties is therefore recommended as being suitably compatible with either of the sole botanical treatments, in the study area. Thus, this research is reasonable, particularly in the aspects of fertilizer economy, environment-friendliness, organic farming and more profitable crop production in the tropics, where soils are continuously cropped and marginal.


Sign in / Sign up

Export Citation Format

Share Document