Timing and rates of nitrogen fertiliser application on seed yield, quality and nitrogen-use efficiency of canola

2016 ◽  
Vol 67 (2) ◽  
pp. 167 ◽  
Author(s):  
B. L. Ma ◽  
A. W. Herath

Effective management strategies for nitrogen (N) fertiliser are important to ensure optimum seed yields and seed quality of canola (Brassica napus L.) crop production. A field experiment was conducted for 3 years in Ontario, Canada to determine the (i) impact of different rates and timing of application of N fertiliser on canola yield and quality; and (ii) fertiliser-N economy, including agronomic N-use efficiency (aNUE), N-uptake efficiency (NupE), N-utilisation efficiency, partial N balance and N harvest index. Treatments included factorial combinations of six (2011) or eight (2012 and 2013) rates of N as urea (46% N) and timing of application (pre-plant only or preplant plus side-dressed applications at the 6-leaf stage). Side-dressed N application resulted in significant improvements in seed yield and protein concentrations (up to 16%) over equivalent preplant-only applications. The highest seed yield (2700 kg ha–1 in 2011 and 3500 kg ha–1 in 2013) was produced by the treatments including side-dressing: 50 + 50 kg N ha–1 or 50 + 100 kg N ha–1 (preplant + side-dressing). Seed protein concentrations varied from 21% to 23% in 2011 and 2013 and up to 28% in 2012. On average, the sum of protein and oil concentrations was 65–68%. Oil yield increased with increasing N rates in 2011 and 2013, but significant increases were recorded only when N was side-dressed at the 6-leaf stage. Drought conditions in 2012 negated responses to N fertiliser regardless of when it was applied. In general, aNUE and N-utilisation efficiency were decreased with increasing N fertiliser rates, but NupE varied among environments with increasing preplant and side-dressed N application. Side-dressed N applications after preplant application resulted in higher partial N balance, aNUE and/or higher NupE than comparative preplant-only N applications. Overall, side-dressed N application led to improved crop N uptake and better N economy of canola production in eastern Canada.

2013 ◽  
Vol 93 (6) ◽  
pp. 1073-1081 ◽  
Author(s):  
E. N. Johnson ◽  
S. S. Malhi ◽  
L. M. Hall ◽  
S. Phelps

Johnson, E. N., Malhi, S. S., Hall, L. M. and Phelps, S. 2013. Effects of nitrogen fertilizer application on seed yield, N uptake, N use efficiency, and seed quality of Brassica carinata . Can. J. Plant Sci. 93: 1073–1081. Ethiopian mustard (Brassica carinata A. Braun) is a relatively new crop in western Canada and research information on its response to N fertilizer is lacking. Two field experiments (exp. 1 at 3 site-years and exp. 2 at 4 site-years) were conducted from 2008 to 2010 in Saskatchewan and Alberta, Canada, to determine effect of N fertilizer application on Brassica carinata plant density, seed and straw yield, N uptake in seed and straw, N use efficiency (NUE), N fertilizer use efficiency (NFUE) and seed quality. N rates applied were 0 to 160 kg N ha−1 and 0 to 200 kg N ha−1 in exps. 1 and 2, respectively. Plant density was not affected by increasing N rate at 5 site-years but declined with high rates of N application at 2 site-years. Seed yield responded to applied N in 6 of 7 site-years, with the non-responsive site having a high total N uptake at the 0 kg N ha−1 rate (high Nt value). There were no sites where seed yields were maximized with the N rates applied. Response trends of straw yield and N uptake were similar to that of seed yield at the corresponding site-years. NUE and NFUE generally declined as N rate increased. Protein concentration in seed generally increased and oil concentration in seed decreased with increasing N rates. In conclusion, the responses of seed yield, total N uptake, NUE, and NFUE to applied N was similar to those reported in other Brassica species with the exception that a rate was not identified in which Brassica carinata yields were maximized.


2012 ◽  
Vol 58 (No. 5) ◽  
pp. 211-216 ◽  
Author(s):  
P. Lü ◽  
J.W. Zhang ◽  
L.B. Jin ◽  
W. Liu ◽  
S.T. Dong ◽  
...  

This study aims to explore the optimum nitrogen (N) application method by analyzing effects of variable N application stages and ratios on the N absorption and translocation of high-yield summer maize (DH661). The study included field experiments and <sup>15</sup>N isotopic dilutions for pot experiments. Results showed that the yield was not increased in a one-off N application at the jointing stage. The uptake of fertilizer-derived N in the grain increased with the increasing of N applied times. Compared to a single or double application, total N uptake (N<sub>up</sub>) and biomass increased significantly by supplying N at the six-leaf stage (V6), ten-leaf stage (V10) and 10 days after anthesis in ratios of 3:5:2 and 2:4:4. The fertilizer-derived recovery rates were 67.5% and 78.1%, respectively. The uptake and utilization of fertilizer-derived N was enhanced by increasing the recovery rate of N supplied after anthesis, and reducing the absorption of soil-derived N. Therefore, the 2:4:4 application ratios was the optimal N application method. &nbsp;


Author(s):  
Fen Gao ◽  
Yuanhong Chen ◽  
SeaRa Lim ◽  
Allen Xue ◽  
Bao-Luo Ma

Effective nitrogen (N) management strategies are important for ensuring a balance between optimizing plant growth and minimizing disease damage. A field experiment was conducted for three years to (i) assess the effects of N fertilizer application on the growth and seed yield of canola, and severities of Sclerotinia stem rot (SSR), and (ii) determine a reasonable N-rate for optimizing plant growth and minimizing the loss from SSR in eastern Canada. The experiment was designed with factorial combinations of eight N treatments and two canola hybrids. All N-treatments reduced canola emergence with increasing preplant N application rates above 100 kg ha–1, but had a positive impact on plant height, fresh weight, dry weight and seed yield. The development of SSR showed differential responses to N application rates. Of all the treatments, the split application (50 kg N ha–1 at preplant plus 100 kg N ha–1 side-dressed at the 6-leaf stage) increased canola growth, and often produced the highest or similar seed yields to those of equivalent N rate applied as preplant. At the 150 kg ha–1 N rate, no severe development of SSR was observed in either preplant-only or split application. Overall, this study demonstrates that the split-N management strategy (50+100 kg ha–1) maintained a balance between enhancing plant growth and mitigating the negative impacts of SSR on canola.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1505
Author(s):  
Amritbir Riar ◽  
Gurjeet Gill ◽  
Glenn K. McDonald

Canola has a high nitrogen requirement and optimal nitrogen (N) management in environments with variable rainfall is a challenge. This study investigated the impact of timing of N as a single or split application at different growth stages on seed yield, N uptake and water-use efficiency in canola. Nitrogen rates of 100 and 200 kg ha−1 were applied after sowing when two leaves were unfolded or equally split between the rosette, green bud and first flower stages. The experiments were conducted at two sites with contrasting rainfall and a supplementary irrigation treatment at the low rainfall site, generating a third environment. Nitrogen application increased seed yield by up to 20% at a high rainfall site and by up to 77% at a medium rainfall site, but the timing of N did not significantly affect the yield response to N. Seed yield was closely associated with total dry matter production and seed m−2. N-use efficiency was influenced more by N recovery and uptake efficiency, rather than physiological efficiency, which highlights the importance of soil moisture availability and the ability of the crop to exploit soil water and N reserves. The results suggest that better use of subsoil moisture by overcoming some of the subsoil constraints may be an avenue for further improvements in yield and nitrogen-use efficiency (NUE) of canola in this environment.


Author(s):  
A.K. Dhaka ◽  
Satish Kumar ◽  
Bhagat Singh ◽  
Karmal Singh ◽  
Amit Kumar ◽  
...  

An experiment was conducted to study nitrogen use efficiency in pigeonpea at Research farm, CCS Haryana Agricultural University, Hisar, India having three nipping treatments (no nipping, nipping at just start of branching and nipping at flower initiation) and five fertility levels (control, 20 kg N + 40 kg P2O5/ha, 30 kg N + 40 kg P2O5 /ha, 40 kg N + 40 kg P2O5/ha and 20 kg N + 40 kg P2O5/ha + foliar spray of 2% N immediately after nipping) replicated thrice in split plot design during growing seasons of 2016 and 2017. Nipping at start of branching reduced the plant height, while increased primary and secondary branches, pods/plant and yield over no nipping. Significantly higher total N uptake, protein content, net return, B: C, agronomical NUE, physiologic NUE, agro-physiologic NUE, apparent recovery efficiency, utilization efficiency of N and partial N balance were improved with nipping at start of branching. Among fertility levels, 40 kg N + 40 kg P2O5 / ha recorded significantly higher yield attributes with 39.7 per cent higher seed yield over control. Significantly higher agronomic NUE, physiologic NUE, agro-physiological NUE, apparent recovery efficiency, utilization efficiency of N, partial N balance and NER were recorded with 20 kg/ha as compared to higher nitrogen doses.


2014 ◽  
Vol 94 (1) ◽  
pp. 35-47 ◽  
Author(s):  
S. S. Malhi ◽  
E. N. Johnson ◽  
L. M. Hall ◽  
W. E. May ◽  
S. Phelps ◽  
...  

1993 ◽  
Vol 41 (3) ◽  
pp. 235-246 ◽  
Author(s):  
J. Ellen

A field experiment with 3 cultivars each of wheat, rye, triticale and barley, grown at a density of about 320 plants/m, was conducted in 1986 on a fertile clay soil at East Flevoland, Netherlands. N at 120 kg/ha for wheat and triticale and 60 kg/ha for rye and barley was split-dressed in 2 applications. N yield was highest in wheat (196 kg/ha) and lowest in rye (123 kg/ha). The amounts taken up were influenced by the N rate. The triticale cv. Lasko and the barley cv. Marinka had a higher N-uptake than the other triticale and barley cultivars. N harvest index (i.e. the ratio of N in grains and N in above-ground DM at final harvest) was lowest in rye and highest in barley. N concentration in plant organs (grains, chaff, leaves, stems and roots) was higher in wheat and triticale than in rye and barley. This was probably caused by the difference in the level of N application. N use efficiency, expressed as grain DM production/kg N taken up, was 53 in wheat, 68 in rye, 50 in triticale and 61 in barley. In all species, the largest reserves of water-soluble carbohydrates (WSC) were found in the stems. Rye allocated more dry matter to stem growth before flowering than wheat, triticale and barley. Averaged over these cereals, 26% of WSC, produced before flowering, was used for redistribution and respiration during grain production.


1996 ◽  
Vol 121 (1) ◽  
pp. 105-114 ◽  
Author(s):  
John D. Lea-Cox ◽  
James P. Syvertsen

We examined how N supply affected plant growth and N uptake, allocation and leaching losses from a fine sandy soil with four Citrus rootstock species. Seedlings of `Cleopatra' mandarin (Citrus reticulata Blanco) and `Swingle' citrumelo (C. paradisi × P. trifoliata) were grown in a glasshouse in 2.3-liter pots of Candler fine sand and fertilized weekly with a complete nutrient solution containing 200 mg N/liter (20 mg N/week). A single application of 15NH415NO3(17.8% atom excess 15N) was substituted for a normal weekly N application when the seedlings were 22 weeks old (day O). Six replicate plants of each species were harvested at 0.5, 1.5, 3.5, 7, 11, and 30 days after 15N application. In a second experiment, NH4 NO3 was supplied at 18,53, and 105 mg N/week to 14-week-old `Volkamer' lemon (C. volkameriana Ten. & Pasq.) and sour orange (C. aurantium L.) seedlings in a complete nutrient solution for 8 weeks. A single application of 15NH415NO3 (23.0% 15N) was substituted at 22 weeks (day 0), as in the first experiment, and seedlings harvested 3,7, and 31 days after 15N application. Nitrogen uptake and partitioning were similar among species within each rate, but were strongly influenced by total N supply and the N demand by new growth. There was no 15N retranslocation to new tissue at the highest (105 mg N/week) rate, but N supplies below this rate limited plant growth without short-term 15N reallocation from other tissues. Leaf N concentration increased linearly with N supply up to the highest rate, while leaf chlorophyll concentration did not increase above that at 53 mg N/week. Photosynthetic CO2 assimilation was not limited by N in this study; leaf N concentration exceeded 100 mmol·m-2 in all treatments. Thus, differences in net productivity at the higher N rates appeared to be a function of increased leaf area, but not of leaf N concentration. Hence, N use efficiency decreased significantly over the range of N supply, whether expressed either on a gas-exchange or dry weight basis. Mean plant 15N uptake efficiencies after 31 days decreased from 60% to 47% of the 15N applied at the 18,20, and 53 mg N/week rates to less than 33% at the 105 mg N/week rate. Leaching losses increased with N rate, with plant growth rates and the subsequent N requirements of these Citrus species interacting with residual soil N and potential leaching loss.


2010 ◽  
Vol 90 (5) ◽  
pp. 655-666 ◽  
Author(s):  
Y. Gan ◽  
A M Johnston ◽  
J D Knight ◽  
C. McDonald ◽  
C. Stevenson

Understanding N dynamics in relation to cultural practices may help optimize N management in annual legume crops. This study was conducted at six environsites (location × year combinations) in southern Saskatchewan, 2004-2006, to quantify N uptake, N2 fixation, and N balance in chickpea (Cicer arietinum L.) in relation to cultivar choice, cropping systems, rhizobial inoculation, and soil N fertility. The cultivars Amit, CDC Anna, CDC Frontier, and CDC Xena were grown at N fertilizer rates of 0, 28, 56, 84, and 112 kg N ha-1 with no Rhizobium and at 0, 28, and 84 kg N ha-1 combined with Rhizobium inoculation, evaluated in both conventional tilled-fallow and continuously cropped no-till systems. Flax was used as a non-N-fixing reference crop. The cultivar CDC Xena had the lowest yield (1.57 Mg ha-1) and seed N uptake (54.4 kg N ha-1), with N use efficiency (NUE, 13.2 kg seed N kg-1) being 17% less than the average of the other cultivars. Consequently, N balance (N input via fertilizer and N-fixation minus N exported) was -32.4 kg N ha-1 for CDC Xena and less negative than the average of the other cultivars (-39.8 kg N ha-1). Inoculated chickpea took up 10 kg ha-1 more N into the seed and 5 kg ha-1 more N into the straw than chickpea that was not inoculated. The amount of N fixed as a percentage of total N uptake was 15% for non-inoculated chickpea and 29% for inoculated chickpea, resulting in negative N balance regardless of cropping system. Increasing N fertilizer rates decreased NUE, with the rate of decrease being greater for non-inoculated chickpea compared with inoculated chickpea. We conclude that optimum productivity of chickpea can be achieved with application of effective Rhizobium inoculants, and that best N management practices must be adopted in the succeeding crops due to a large negative N balance after a chickpea crop.Key words: Chickpea, Cicer arietinum, N fertilizer, N2 fixation, Rhizobium inoculants, N balance, nitrogen use efficiency, N uptake


2008 ◽  
Vol 88 (1) ◽  
pp. 111-119 ◽  
Author(s):  
S. D. Urbaniak ◽  
C. D. Caldwell ◽  
V. D. Zheljazkov ◽  
R. Lada ◽  
L. Luan

Worldwide, oilseed demand is steadily expanding. This study assessed the novel oilseed crop Camelina sativa L. in the Maritime Provinces of Canada. Evaluations of cultivar and applied N were performed at Truro, NS, Harrington, PEI, and Hartland, NB, in 2005 and 2006. The results show that the selection of cultivar is an important determinant for the potential success or failure of C. sativa production. Differences in plant stand, plant height, seed yield, oil content and fatty acid profile were found among the cultivars. The cultivar Calena provided the most consistent performance in terms of plant establishment, yield and oil content across all year-sites. Plant height, seed yield, oil content, total plant N and seed protein all responded to applied N rate. Applied N increased the seed yield of C. sativa, but the increase was not significant when the application rates were over 60 kg N ha-1 in NS or 80 kg N ha-1 in PEI. Plant height, total N content in plant tissue and seed protein content increased with increased N application, while oil content decreased. With the exception of erucic acid, all the main fatty acids in C. sativa oil responded to applied N levels or the interaction of N levels and year. Regression analysis showed that the contents of oleic acid and eicosenoic acid decreased with increased N application. The response of linolenic acid to N application was not consistent at each year-site. Results of this study provide convincing evidence of the agronomic suitability of C. sativa to the Maritime Provinces of Canada. Key words: Camelina sativa, cultivar, nitrogen, yield, seed quality


Sign in / Sign up

Export Citation Format

Share Document