Effects of a spring-sown brassica crop on lamb performance and on subsequent establishment and grain yield of dual-purpose winter wheat and oat crops

2007 ◽  
Vol 47 (7) ◽  
pp. 815 ◽  
Author(s):  
W. M. Kelman ◽  
H. Dove

We evaluated the integration of a spring forage brassica crop (Brassica campestris cv. Hunter) into a cereal–pasture rotation, as a means of assessing the effects of this practice on the subsequent establishment and grain yield of wheat and oat crops. A brassica crop was grown for lamb production on 0.2 ha plots prepared for dual-purpose cereals, in spring 2003 near Canberra, ACT, Australia. Mackellar winter wheat and Blackbutt oats were sown in the following autumn on the previously sown brassica plots and on plots left fallow over the spring–summer period. A factorial experiment was used to determine the effects of (i) cultivar, (ii) brassica v. fallow, and (iii) grazing on cereal establishment and grain yield. Lamb liveweight gains on brassica over 33 days were rapid (294 g/day) and provided 2141 grazing days/ha and 637 kg lamb weight gain/ha. Average grain yield of Mackellar on plots following brassica (2.8 t/ha) was reduced by 29% compared with plots following fallow. Average grain yield on grazed plots (2.6 t/ha) was reduced by 38% compared with ungrazed plots. In both Mackellar and Blackbutt, reduced numbers of kernels per spike and reduced kernel weight accounted for the reduction in grain yield under grazing. Two other experiments were conducted at a separate site to obtain data on the nutritive value of the cereal forages and to record phenological development of the two cereals and compare grain yield responses to cutting before and after stem elongation stages. In vitro and in vivo measurements of digestibility in the vegetative phase were similar in the two cereals (91–94%). Grain yield was significantly reduced following cutting at the post stem elongation stage in Mackellar and Blackbutt and, in Mackellar, was attributable to reduced kernel number per spike and kernel weight. The overall economic return, combining actual returns from lamb production on the forage brassica, and estimated returns from grazing and grain production, after variable costs of each phase were accounted for, were $1117/ha for Mackellar wheat and $1081/ha for Blackbutt oats. These returns were $583/ha and $910/ha more than the estimated return from the fallow, ungrazed treatments for wheat and oats, respectively.


2010 ◽  
Vol 50 (6) ◽  
pp. 508 ◽  
Author(s):  
D. R. Miller ◽  
G. J. Dean ◽  
P. D. Ball

The effects of end-grazing forage residual and continuous v. rotational grazing systems on prime lamb performance, grain yield and quality were examined in an irrigated dual-purpose winter wheat (cv. Mackellar) crop in Tasmania. The design was a two end-grazing residual (400 and 800 kg/ha of dry matter (DM) at Zadoks Growth Stage 30, Low and High respectively, 0.2 ha plots) × two grazing system (continuously, or rotationally grazed in four subplots) factorial, replicated three times. Mixed-sex, second-cross lambs [37 kg liveweight (LW), 2.5 body condition score, 45 kg DM/head initial feed allowance] grazed for a total of 46 days before removal. Initial feed availability was 1875 kg DM/ha, with final residuals of 520 ± 57 and 940 ± 70 kg DM/ha for the Low and High treatments respectively. Particularly for the Low residual, in vitro DM digestibility and crude protein at stem elongation were reduced (P < 0.05) by rotational compared with continuous grazing. The weekly lamb growth rate (g/day) during the first 5 weeks of grazing was linearly related to average weekly available DM in kg/ha (GR = 0.35 ± 0.041 × DM – 194 ± 49.0, P < 0.01, R2 = 0.56). Total LW produced (336 ± 11.7 kg/ha), and grain yield (6.9 ± 0.21 t/ha), protein (11.4%), screenings <2.2 mm (10.9%) and 100 grain weights (3.82 g DM) were not different between treatments. There were no advantages of rotational grazing compared with continuous grazing. Irrigated dual-purpose winter wheat can be continuously grazed by lambs up to a 500 kg DM/ha residual at stem elongation without compromising total LW produced, grain yields or grain quality.



2012 ◽  
Vol 63 (6) ◽  
pp. 520 ◽  
Author(s):  
L. H. Tian ◽  
L. W. Bell ◽  
Y. Y. Shen ◽  
J. P. M. Whish

Conventional rainfed mixed crop–livestock systems of western China lack high-quality forage and restrict livestock production. This study explored the forage potential from wheat and its effects on subsequent grain yield. Different cutting times were imposed on winter wheat (Triticum aestivum) at Qingyang, Gansu Province, in two growing seasons, and the effect of nitrogen (N) topdressing rates (0, 60, and 120 kg N/ha) on grain yield recovery was explored. Results showed the potential to produce 0.8–1.6 t DM/ha of wheat forage with high nutritive value when cut before stem elongation (GS 30). In the wetter year, cutting before stem elongation did not delay crop development significantly (<3 days at anthesis and 5 days at maturity), but grain yields were reduced by 17–28% compared with the uncut crop (5.8 t DM/ha), mainly due to reductions in number of spikes per m2 and, consequently, number of grains per m2. In both seasons, more forage biomass was available if crops were cut later than GS 32, but this came with large reductions (>62%) in grain yield and delays in crop development (>9 days or 131 degree-days). Crops cut later than GS 30 had greatly reduced harvest index, tillers per m2, and total N uptake but higher grain protein content. There was no significant effect of N topdressing rate on grain yield, although provided the crop was cut before GS 30, higher rates of N increased maturity biomass and crop N uptake by replacing N removed in cut biomass. This study showed that physiological delay of wheat due to cutting was not significant. The forage harvested from winter wheat before stem elongation could be a valuable feed resource to fill the feed gap in western China.



2021 ◽  
Vol 8 (01) ◽  
Author(s):  
KAMLESH RAM ◽  
RAMESH SINGH

In Vitro and In Vivo studies on the efficacy of fungicides and biopesticides. Among the fungicides, in Carbedazim to the most effective as they have inhibited the mycelia growth completely of the test fungus, and Benomyl, Topsin - M, Ridomil,Vitavax were found the next best in inhibiting the mycelial growth of the pathogen up to 92.11% to 83.46% respectively. Sadabahar was least effective plant extracts which causes 42 mm of radial growth and inhibited the growth of the only 19.23%. In Vivo condition the maximum seed germination (95.50% and 95.33%), minimum wilt incidence (5.16% and 3.65%) and highest grain yield (10.50 q/ha and 10.35 q/ha) was found seed treatment with Carbendazim (0.2%). Among the test plant extracts Tulsi was lested effective, which show the minimum seed germination (80.00% and 77.50%), maximum wilt incidence (15.70% and 14.10%), and lowest grain yield (3.92 q/ha and 4.17 q/ha).



2020 ◽  
Vol 1 (1) ◽  
pp. 45-49
Author(s):  
Tsotne Samadashvili ◽  
Gulnari Chkhutiashvili ◽  
Mirian Chokheli ◽  
Zoia Sikharulidze ◽  
Qetevan Nacarishvili

Wheat is a vital crop in Georgia and in the world. Because of the increase in the rate of population growth, improving the grain yield is the way to meet food demand. Proper crop nutrition plays a vital role in maintaining the world’s food supply. Fertilizer is essential for accomplishing this.One of the most important means for increasing the wheat yield is fertilizer, especially, organic fertilizer. The present research was carried out to study the effects of different doses (150ml, 200ml and 300 ml on ha) of humic organic fertilizer “Ecorost” on yield of winter wheat cultivar “Tbilisuri 15”. The humic liquid fertilizer "Ecorost" is a peat-based organic-mineral fertilizer. The product is active and saturated due to the use of the latest technology and living bacteria found in peat. The field trials were conducted in 2017-2019 at the Experimental Site of Scientific Research Center of Agriculture in Dedopliskharo- arid region (Eastern Georgia).Liquid fertilizer was applied two times: in tillering stage in early spring and two weeks after - in stem elongation stage. Results indicated that the highest wheat grain yield (4t/ha) was achieved when the plants were fertilized with 300 ml on 1 ha ofEcorost. Applications of liquid fertilizer “Ecorost” increased grain yield of winter wheat by 16.2% in comparison with standard nitrogen fertilization. Thus, liquid fertilizer “Ecorost” had a significant effect on wheat grain yield compared to control standard nitrogen fertilizer.



2007 ◽  
Vol 55 (3) ◽  
pp. 273-282
Author(s):  
S. Sharma ◽  
H. Chaudhary

Seventy-eight doubled haploid (DH) lines, derived from 21 elite and diverse winter × spring wheat F 1 hybrids, following the wheat × maize system, were screened along with the parental genotypes under in vitro and in vivo conditions for cold tolerance. Under in vitro conditions, the 2,3,5-triphenyl tetrazolium chloride (TTC) test was used to characterize the genotypes for cold tolerance. Based on the TTC test, only one doubled haploid, DH 69, was characterized as cold-tolerant, seven DH and five winter wheat parents were moderately tolerant, while the rest were susceptible. Analysis of variance under in vivo conditions also indicated the presence of sufficient genetic variability among the genotypes (DH lines + parents) for all the yield-contributing traits under study. The correlation and path analysis studies underlined the importance of indirect selection for tillers per plant, harvest index and grains per spike in order to improve grain yield. It was also concluded that selection should not be practised for grain weight per spike as it would adversely affect the grain yield per plant. When comparing the field performance of the genotypes with the in vitro screening parameters, it was concluded that in addition to the TTC test, comprising a single parameter, other physiological and biochemical in vitro parameters should be identified, which clearly distinguish between cold-tolerant and susceptible genotypes and also correlate well with their performance under field conditions.



2007 ◽  
Vol 2007 ◽  
pp. 197-197
Author(s):  
Hassan Fazaeli ◽  
Seyed Ahmad Mirhadi

Biological de-lignification of straw by white-rot fungi seems a promising way of improving its nutritive value. The bio-conversion of lignocellulosic materials is circumscribed to the group of white-rot fungi, of which some species of Pleurotus are capable of producing upgraded spent-straws as ruminant feed (Fazaeli et al., 2004). Treating of cereal straw with white-rot fungi as animal feed was studied by several workers (Gupta et al., 1993; Zadrazil, 1997). However, most of the trials were conducted at in vitro stage and used cell wall degradation and in vitro digestibility as an index to evaluate the biological treatments. This experiment was conducted to study the effect of fungal treatment on the voluntary intake, in vivo digestibility and nutritive value index of wheat straw obtained from short-term and long-term solid state fermentation (SSF).



2007 ◽  
Vol 2007 ◽  
pp. 233-233 ◽  
Author(s):  
Armin Towhidi ◽  
Farnoush Rostami ◽  
Reza Masoumi

In Iran, Javan (2001) has reported the digestibility some arid rangelands plants by bovine rumen liquor. The determination of in vivo digestibility of wheat straw implies that camel apparently digested poor quality roughages more than cattle and sheep (Cianci et al., 2004). Therefore, It is required to measure the in vitro digestibility of herbages by camel rumen liquor. In province of yazd, nutritive value of 11 different plant species for camel were determined (Towhidi, 2007). The objectives of the current study were to determine 1) the chemical composition, gross energy of the most consuming plant species from rangeland of Semnan province including Seidlitzia rosmarinu, Tamarix tetragyna, Tamarix strica, Halostachys spp, Saudea fruticosa., Alhagi camelorum, Haloxylon ammondendron., Salsola arbescola, Hammada salicornica and, 2) in vitro digestibility of the plants by camel rumen liquor.



2018 ◽  
Vol 13 (1) ◽  
pp. 269-278 ◽  
Author(s):  
Mustafa Olfaz ◽  
Unal Kilic ◽  
Mustafa Boga ◽  
Abdiwali Mohamoud Abdi

AbstractThis study was conducted to determine the potential nutritive value andin vitrogas production (IVGP) parameters ofOlea europaea L. (Olive = OL),Morus alba L. (Mulberry = ML) andCitrus aurantium L. (Sour orange = SOL) tree leaves. Hohenheim gas test was used to determine thein vitrogas productions of the leaves. The gas production of samples over time was recorded for 3, 6, 9, 12, 24, 48, 72 and 96 h after incubation. Completely Randomized Design was used to compare gas production, and gas production kinetics of samples. The findings of the present study suggested that there were differences among the tree leaves in terms of crude protein, NDF,in vitrogas productions, organic matter digestibility (OMD), metabolisable energy (ME), net energy lactation (NEL) and relative feed values (RFV) (P<0.01). ML had the highest condensed tannin contents (P<0.05),in vitrogas production (IVGP), OMD and energy values (P<0.01). SOL had highest RFV values. OL showed the lowest IVGP when compared to SOL and ML. Low NDF and ADF contents of SOL would probably increase the voluntary intake, digestibility and relative feed values of these leaves by ruminants. In conclusion, it was determined that OL, ML and SOL used in the study have lowin vitrogas production and can be utilized as alternative roughage feed in ruminants. However, it is recommended that the results obtained from this research should be tested inin vivostudies.



1994 ◽  
Vol 86 (5) ◽  
pp. 891-896 ◽  
Author(s):  
Richard E. Engel ◽  
Joyce Eckhoff ◽  
Robert K. Berg


Sign in / Sign up

Export Citation Format

Share Document