Effects of method and timing of nitrogen fertilizer application on irrigated maize growth and nutrient distribution in soil

1984 ◽  
Vol 24 (127) ◽  
pp. 606 ◽  
Author(s):  
PE Bacon ◽  
JA Thompson

The growth and nitrogen uptake of a maize crop (Zea mays) were studied under furrow irrigation on a red-brown earth soil. Plots receiving 120 kg N/ha as urea at sowing were compared with unfertilized plots and with plots receiving the same amount of nitrogen, as urea or aqua ammonia, added to water during three irrigations: in the first or last 2 h of three 6-h irrigations (at 20 kg N/ha.h), or continuously during three 6-h irrigations (6.7 kg N1ha.h). Dry matter accumulation and nitrogen uptake measurements made 21,36,49,84 and 150 d after emergence all revealed a consistent pattern of results. The same pattern was also evident in grain yield. Urea-fertilized plots gave higher yields (mean of the three application methods = 3.2 t/ha) than ammonia-fertilized plots (1 .8 t/ha). Application early in the irrigation was superior to application throughout irrigation (3 .2 and 2 .5 t/ha, respectively), while plots receiving nitrogen late in the irrigation gave the lowest yield (1 .8 t/ha). There was no significant (P< 0.05) difference between yield from plots receiving urea early in irrigation and that from those receiving urea at sowing. Soil nitrate-nitrogen concentrations below the hills were higher for urea treatments, suggesting greater penetration of the urea solution. In the ammonia treatments, a much higher concentration of ammonium-nitrogen was found immediately under the furrow than under the furrows of urea-fertilized plots, confirming the relatively restricted movement of ammonia into the soil. Ammonia concentration of the irrigation water fell by up to 32% over a 90 m length of furrow. This loss was ascribed to volatilization. Urea was superior to ammonia largely because it minimized mineral nitrogen retention near the soil surface and because it was not susceptible to volatilization losses. Fertilizer application early in the irrigation, during the period of high infiltration, resulted in lower retention of mineral nitrogen close to the furrow surface and away from the root zone. It also reduced the proportion of nutrient solution lost to the drainage system.

2017 ◽  
Vol 1 (92) ◽  
pp. 44-49
Author(s):  
V.A. Havryliuk ◽  
O.V. Valetska ◽  
O.V. Koliada ◽  
A. M. Bortnik ◽  
D. V. Korotynskyi

The results of the study of the regularities of the transformation of peat soils (Fibric Histosols Dystric) of Western Polissia of Ukraine are presented. The regional character of the development of peat soils are illustrated by the Kopaivska drainage system (the village of Pishcha, Shatskyi district, Volyn oblast). The criteria for assessing the agroecological sustainability of peatlands subjected to degradation are proposed. Indicators rang together with scoring system are suggested. Route field expeditions were conducted during 2012-2015. The specific features of changes in agroecological and agrochemical indicators of degraded peat soils are established. The following parametres were investigated bogging, state of the soil surface and cover crop, erosional feature, skeleton soil profile, gritty consistency, number of stumps and wood, depth of humus-accumulated horizons, organic carbon content, mineral nitrogen, labile phosphorus and potassium compounds, radionuclide contamination, ignition loss, soil reaction. The change of the main diagnostic signs of the agroecological state of degraded peat soils is revealed. The results indicate a change in the degree of degradation from moderate to severe. According to the results of observations, during the years under investigation, there have been significant changes in agrochemical parameters of fire-induced soil. This is due to the variability of meteorological conditions. In particular, there was an increase in the content of organic carbon and mineral nitrogen compounds, in the content of mobile potassium compounds, an increase in the acidity of the soil and radionuclide contamination. Based on the results obtained, measures are proposed to restore the processes of peat formation, their water regimes, and the elimination of fire-induced occurrence. We propose to carry out renaturation and creation of a raw material zone for the production of alternative fuel and energy resources and solid types of fertilizers.


1996 ◽  
Vol 127 (2) ◽  
pp. 151-159 ◽  
Author(s):  
J. Petersen

SUMMARYField experiments at Askov and Lundgaard Experimental Stations, Denmark, were carried out in 1987–91. Winter and spring applications of pig slurry at two application rates and an unfertilized treatment were combined with three rates of mineral nitrogen fertilizer; 15 treatment in all. Grain and straw yield, nitrogen content and nitrogen uptake of spring barley were measured at harvest. All main effects were significant, resulting in increasing yield and nitrogen uptake both when increasing the rate of mineral nitrogen fertilizer and slurry, and when slurry was applied in spring rather than in winter. The nitrogen content of the barley was affected by mineral nitrogen fertilizer application, and by the rate of slurry. The nitrogen efficiency of applied ammonia-N in the pig slurry was estimated by a quadratic polynomial yield response function and expressed relative to a reference function based on the application of mineral nitrogen fertilizer. The efficiency was estimated at 10 for spring-applied pig slurry. The value for winter-applied pig slurry was lower (0·6) and more variable. The efficiency of ammonia-N in spring-applied pig slurry decreased by 0·4/100 kg N/ha when supplementary mineral nitrogen fertilizer was applied at the same time.


2016 ◽  
Vol 3 (3) ◽  
pp. 28-34
Author(s):  
V. Volkogon ◽  
I. Korotka

Aim. To determine physiologically expedient rates of mineral nitrogen in winter rye production on sod-podzol- ic soils based on the orientation of the processes of biological nitrogen transformation in the plants rhizosphere. Methods. Field studies, gas chromatography determination of potential nitrogen fi xation activity and potential emissions of N 2 O. Results. The results obtained have demonstrated that the rates of mineral nitrogen, not ex- ceeding 60 kg/ha, can be considered physiologically expedient for winter rye production on sod-podzolic soils. Under the application of microbial preparation Diazobakteryn, there is a higher physiological need of plants for nitrogen, which allows increasing the rates of nitrogen fertilizers up to 90 kg/ha. Conclusions. The orienta- tion of the processes of biological nitrogen transformation in the root zone of plants is a reliable indicator of determining the appropriateness of nitrogen fertilization of crops.


2013 ◽  
Vol 39 (1) ◽  
pp. 126
Author(s):  
Qiao-Yi HUANG ◽  
Shuan-Hu TANG ◽  
Jian-Sheng CHEN ◽  
Fa-Bao ZHANG ◽  
Kai-Zhi XIE ◽  
...  

1971 ◽  
Vol 2 (2) ◽  
pp. 79-92 ◽  
Author(s):  
K. J. KRISTENSEN ◽  
H. C. ASLYNG

The lysimeter installation described comprises 36 concrete tanks each with a soil surface of 4 m2. The installation is useful for plant growth experiments under natural conditions involving different treatment combined with various controlled water supplies. The ground installation is at least 20 cm below the soil surface and tillage can be done with field implements. The lysimeter tanks are provided with a drainage system which can drain the soil at the bottom (100 cm depth) to a tension of up to 100 cm. A constant ground-water table at less than 100 cm soil depth can also be maintained. The soil moisture content at different depths is determined from an underground tunnel by use of gamma radiation equipment in metal tubes horizontally installed in the soil. Rainfall is prevented by a movable glass roof automatically operated and controlled by a special rain sensor. Water is applied to the soil surface with a special trickle irrigation system consisting of a set of plastic tubes for each lysimeter tank and controlled from the tunnel. Fertilizers in controlled amount can be applied with the irrigation water.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaodan Wang ◽  
Yaliang Wang ◽  
Yuping Zhang ◽  
Jing Xiang ◽  
Yikai Zhang ◽  
...  

AbstractDetermination of the optimal fertilization method is crucial to maximize nitrogen use efficiency and yield of different rice cultivars. Side-deep fertilization with controlled-release nitrogen, in conjunction with machine transplanting and subsequent topdressing, was applied to Indica–japonica hybrid rice ‘Yongyou1540’ (YY1540) and indica hybrid rice ‘Tianyouhuazhan’ (TYHZ). Four nitrogen treatments were applied in 2018 and 2019: traditional nitrogen application with quick-release nitrogen (T1), single-dose deep fertilization at transplanting with 100% controlled-release nitrogen (T2), and deep fertilization of 70% controlled-release nitrogen and topdressing of 30% quick nitrogen at tillering (T3), or at panicle initiation (T4). Side-deep fertilization reduced the fertilizer application frequency without causing yield loss, T4 enhanced the yield of YY1540 by increasing the number of productive tillers and number of spikelets per panicle compared with T1, T2 and T3. The yield of TYHZ showed no significant difference among treatments. The T4 treatment decreased the number of tillers at the tilling peak stage and increased the percentage productive tillers and number of differentiated spikelets. Compared with the other treatments, T4 increased dry matter accumulation and leaf area index during panicle initiation and grain ripening, and contributed to enhanced nitrogen uptake and nitrogen utilization in YY1540. On average, nitrogen uptake and utilization in YY1540 were highest in T4, but no significant differences among treatments were observed in TYHZ. Dry matter accumulation and nitrogen uptake from panicle initiation to heading of YY1540 were correlated with number of spikelets per panicle, but no significant correlations were observed for TYHZ. Supplementary topdressing with quick-release nitrogen at the panicle initiation stage was required to increase yield of indica–japonica hybrid rice, whereas single-dose deep fertilization with controlled-release nitrogen is satisfactory for the indica hybrid cultivar.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 83
Author(s):  
Gabriela Mühlbachová ◽  
Pavel Růžek ◽  
Helena Kusá ◽  
Radek Vavera ◽  
Martin Káš

The climate changes and increased drought frequency still more frequent in recent periods bring challenges to management with wheat straw remaining in the field after harvest and to its decomposition. The field experiment carried out in 2017–2019 in the Czech Republic aimed to evaluate winter wheat straw decomposition under different organic and mineral nitrogen fertilizing (urea, pig slurry and digestate with and without inhibitors of nitrification (IN)). Treatment Straw 1 with fertilizers was incorporated in soil each year the first day of experiment. The Straw 2 was placed on soil surface at the same day as Straw 1 and incorporated together with fertilizers after 3 weeks. The Straw 1 decomposition in N treatments varied between 25.8–40.1% and in controls between 21.5–33.1% in 2017–2019. The Straw 2 decomposition varied between 26.3–51.3% in N treatments and in controls between 22.4–40.6%. Higher straw decomposition in 2019 was related to more rainy weather. The drought observed mainly in 2018 led to the decrease of straw decomposition and to the highest contents of residual mineral nitrogen in soils. The limited efficiency of N fertilisers on straw decomposition under drought showed a necessity of revision of current strategy of N treatments and reduction of N doses adequately according the actual weather conditions.


2019 ◽  
Vol 7 (2) ◽  
pp. 253
Author(s):  
I Made Andi Purnama Wijaya ◽  
Yohanes Setiyo ◽  
I Wayan Tika

Suhu tanah adalah salah satu sifat fisik tanah yang secara langsung mempengaruhi pertumbuhan tanaman pakcoy. Tujuan penelitian ini adalah (1) untuk menganalisis suhu di zona perakaran, (2) menganalisis hubungan antara dosis pemupukan mempergunakan kompos dengan suhu di zona perakaran dan (3) untuk menganalis suhu yang optimum untuk produktivitas dan kualitas pakcoy yang dihasilkan saat panen. Rancangan penelitian yang digunakan rancangan acak lengkap, dengan lima perlakuan dan tiga ulangan. Perlakuan tersebut adalah P0 : dosis kompos 0 kg/m2, P1 : dosis kompos 1 kg/m2, P2 : dosis kompos 2 kg/m2, P3 : dosis kompos 3 kg/m2, dan P4 : dosis kompos 4 kg/m2. Parameter yang diamati pada penelitian ini adalah suhu udara, suhulingkungan, kadar air tanah dan produktivitas. Padamalam hari suhu tanah di zona perakaran lebih tinggi 0,59 oC dari pada suhu lingkungan. Suhu tanah di zona perakaran terendah dan tertinggi adalah 18,02 oC dan 21,94 oC. Suhu tanah malam hari dan siang hari untuk dosis 0-5kg/m2 masih toleran pada tanaman pacoy. Berat kering tanaman pakcoy tertinggi pada perlakuan dosis kompos 4kg/m2 denganberat 92,21 gram/tanaman dan terendah pada perlakuan kontrol dengan berat 71,82 gram/tanaman.   The temperature of the soil is one of the physical properties of the soil, this soil physical properties direc2tly affect plant growth pakcoy.  The purpose of this research are (1) to analyze the temperature at root zone, temperature inside and out of the mini greenhouse, (2) analyze the relationship between temperature at root zone  with doses of compost fertilizer application and 3) to analyze the optimum dose of compost based on productivity and quality of the pakcoy is generated when the harvest. The design of the research used randomized complete design, with five treatments and three replicates. The treatment is P0: a dose of compost 0 kg/m, P1: a dose of compost 1 kg/m2, P2: a dose of compost 2 kg/m2, P3: the dose of compost 3 kg/m2, and P4: a dose of compost 4 kg/m2. The parameters observed in this research is the air temperature, the temperature of the environment, ground water levels and productivity.  At night the temperature of the soil rooting zone higher at 0.59 ºC than at the temperature of the environment. Soil temperature at root zone the lowest  and the highest  are 18.02 oC and 21.94 oC.  The temperature of the soil the night and during the day for dose 0-5 kg/m2 was still tolerant plants pakcoy. Dry weight of the plant the highest pakcoy on the treatment dose of compost 4 kg/m2  with a weight of 92.21 grams/lowest at the treatment plant and the control by the weight of 71.82 grams/plant.


1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 713
Author(s):  
Edward G. Barrett-Lennard ◽  
Rushna Munir ◽  
Dana Mulvany ◽  
Laine Williamson ◽  
Glen Riethmuller ◽  
...  

This paper focuses on the adverse effects of soil sodicity and alkalinity on the growth of barley (Hordeum vulgare L.) in a rainfed environment in south-western Australia. These conditions cause the accumulation of salt (called ‘transient salinity’) in the root zone, which decreases the solute potential of the soil solution, particularly at the end of the growing season as the soil dries. We hypothesized that two approaches could help overcome this stress: (a) improved micro-water harvesting at the soil surface, which would help maintain soil hydration, decreasing the salinity of the soil solution, and (b) soil amelioration using small amounts of gypsum, elemental sulfur or gypsum plus elemental sulfur, which would ensure greater salt leaching. In our experiments, improved micro-water harvesting was achieved using a tillage technique consisting of exaggerated mounds between furrows and the covering of these mounds with plastic sheeting. The combination of the mounds and the application of a low rate of gypsum in the furrow (50 kg ha−1) increased yields of barley grain by 70% in 2019 and by 57% in 2020, relative to a control treatment with conventional tillage, no plastic sheeting and no amendment. These increases in yield were related to changes in ion concentrations in the soil and to changes in apparent electrical conductivity measured with the EM38.


Sign in / Sign up

Export Citation Format

Share Document