Response of soybeans to sowing date during the wet season in the Ord Irrigation Area, Western Australia

1988 ◽  
Vol 28 (3) ◽  
pp. 357 ◽  
Author(s):  
DF Beech ◽  
AL Garside ◽  
IM Wood

The responses of 3 soybean cultivars to sowing date during the wet season in the Ord Imgation Area (OIA) in northern Western Australia are described. The cultivars, Buchanan, Ross and Durack, are classified as early, medium and late maturity respectively, when grown during the wet season in the OIA. The cultivars were grown 10 times between 22 December and 18 April during 2 wet seasons and we investigated the patterns of phenology, growth and seed production. Sowing date had no significant effect (P> 0.05) on the time to flowering (26-36 days) with cv. Buchanan, but the duration of flowering was curtaiied so that the period from sowing to maturity declined from 120 to 95 days as sowing was delayed from December to April. In contrast the time to flowering of cv. Durack declined in response to photoperiod from about 70 to 40 days and the time from sowing to maturity declined from about 160 to 100 days. The responses of cv. Ross were intermediate between those of Buchanan and Durack. The phenological responses to sowing date were consistent with responses to photoperiod rather than to temperature. Sowing date also affected plant morphology and yields and quality of seed. Delay in sowing after December led to declines in above-ground dry matter yields at flowering, in number of nodes on the main stem at flowering, crop height at maturity and seed yields. Mean individual seed weights increased with delay in sowing. Oil concentrations in the seed declined (from 23 to 17%) and protein concentrations increased (from 32 to 45%) as the period of pod development occurred later in the season. Phenology is a major determinant of the suitability of a cultivar for specific cropping systems. The early maturing cultivar, Buchanan, most closely meets the requirements for a system of double cropping in which the wet season soybean crop is followed by a May sown dry season crop. The late maturing cultivar, Durack, is suitable for a system involving a single wet-season crop.


2001 ◽  
Vol 41 (1) ◽  
pp. 71 ◽  
Author(s):  
R. K. Khangura ◽  
M. J. Barbetti

Canola crops were monitored throughout the Western Australian wheatbelt during 1996–99 to determine the incidence and severity of crown cankers caused by the blackleg fungus (Leptosphaeria maculans). All crops surveyed had blackleg. The incidence of crown canker was 48–100%, 15–100%, 9–94% and 48–100% during 1996, 1997, 1998 and 1999, respectively. The mean incidence of crown cankers statewide was 85, 63, 55 and 85% in 1996, 1997, 1998 and 1999, respectively. The severity of crown canker (expressed as percentage disease index) ranged between 30 and 96%, 3 and 94%, 5 and 78% and 21 and 96% during 1996, 1997, 1998 and 1999, respectively. These high levels of blackleg can possibly be attributed to the accumulation of large amounts of infested canola residues. In 1999, there were effects of variety, application of the fungicide Impact, distance to last year’s canola residues and rainfall on the incidence and severity of blackleg. However, there were no effects of sowing date or region on the disease incidence or severity once the other factor effects listed above had been considered. In 1995, an additional survey of 19 sites in the central wheatbelt of Western Australia assessed the survival of the blackleg fungus on residues from crops grown in 1992–94. The residues at all sites carried blackleg. However, the extent of infection at any particular site varied from 12 to 100% of stems with the percentage of stems carrying pseudothecia containing ascospores varying between 7 and 96%. The high levels of blackleg disease found in commercial crops are indicative of significant losses in seed yields, making it imperative that management of blackleg be improved if canola is to remain a viable long-term cropping option in Western Australia.



2006 ◽  
Vol 46 (10) ◽  
pp. 1355
Author(s):  
M. Seymour

Narbon bean (Vicia narbonensis L.) shows promise as a fodder, green manure and grain crop in south-western Australia. This study examines the effect of time of sowing (2 experiments), plant density (3 experiments) and reaction to herbicides (4 experiments on tolerance to herbicides and 1 experiment on removing narbon bean from a wheat crop) in 10 separate field experiments sown at 4 locations in the mallee region of Western Australia from 1998 to 2001. Narbon bean was found to be unresponsive to changes in sowing date with yield maintained until the first week of June. The optimum plant density (90% of fitted maximum) for seed yield was found to be 31 plants/m2, equivalent to sowing rates in the range of 75–100 kg/ha. A wide range of herbicides applied either before sowing or immediately after sowing and before emergence had no significant effect on grain yield. These included simazine (750 g a.i./ha), cyanazine (1.25 kg a.i./ha) and diuron (500 g a.i./ha), which were applied immediately before sowing, and imazethapyr (29 g a.i./ha), which was applied after sowing, before emergence. Diflufenican (75 g a.i./ha) was found to be the only available option for post-emergence control of broadleaf weeds. The use of the non-selective herbicides glyphosate (450 g a.i./L) and Sprayseed 250 (paraquat 135 g a.i./L and diquat 115 g a.i./L) as post-emergence herbicides was found to be unpredictable at a range of application rates. Results ranged from a yield loss of 47% to a yield increase of 23%. In an experiment to test a range of herbicides for the selective control of narbon bean within a wheat crop, numerous herbicides were found to effectively remove volunteer narbon bean indicating that narbon bean is unlikely to become a weed in most cereal cropping systems.



1977 ◽  
Vol 69 (4) ◽  
pp. 635-638 ◽  
Author(s):  
L. R. Nelson ◽  
R. N. Gallaher ◽  
M. R. Holmes ◽  
R. R. Bruce


2020 ◽  
Vol 56 (3) ◽  
pp. 422-439
Author(s):  
Guoping Wang ◽  
Yabing Li ◽  
Yingchun Han ◽  
Zhanbiao Wang ◽  
Beifang Yang ◽  
...  

AbstractThe cotton-wheat double-cropping system is widely used in the Yellow River Valley of China, but whether and how different planting patterns within cotton-wheat double-cropping systems impact heat and light use efficiency have not been well documented. A field experiment investigated the effects of the cropping system on crop productivity and the capture and use efficiency of heat and light in two fields differing in soil fertility. Three planting patterns, namely cotton intercropped with wheat (CIW), cotton directly seeded after wheat (CDW), and cotton transplanted after wheat (CTW), as well as one cotton monoculture (CM) system were used. Cotton-wheat double cropping significantly increased crop productivity and land equivalent ratios relative to the CM system in both fields. As a result of increased growing degree days (GDD), intercepted photosynthetically active radiation (IPAR), and photothermal product (PTP), the capture of light and heat in the double-cropping systems was compared with that in the CM system in both fields. With improved resource capture, the double-cropping systems exhibited a higher light and heat use efficiency according to thermal product efficiency, solar energy use efficiency (Eu), radiation use efficiency (RUE), and PTP use efficiency (PTPU). The cotton lint yield and biomass were not significantly correlated with RUE across cropping patterns, indicating that RUE does not limit cotton production. Among the double-cropping treatments, CDW had the lowest GDD, IPAR, and PTP values but the highest heat and light resource use efficiency and highest overall resource use efficiency. This good performance was even more obvious in the high-fertility field. Therefore, we encourage the expanded use of CDW in the Yellow River Valley, especially in fields with high fertility, given the high productivity and resource use efficiency of this system. Moreover, the use of agronomic practices involving a reasonably close planting density, optimized irrigation and nutrient supply, and the application of new short-season varieties of cotton or wheat can potentially enhance CDW crop yields and productivity.



2011 ◽  
Vol 62 (12) ◽  
pp. 1067 ◽  
Author(s):  
L. G. Gaynor ◽  
R. J. Lawn ◽  
A. T. James

The response of irrigated soybean to sowing date and to plant population was evaluated in field experiments over three years at Leeton, in the Murrumbidgee Irrigation Area (MIA) in southern New South Wales. The aim was to explore the options for later sowings to improve the flexibility for growing soybean in double-cropping rotations with a winter cereal. The experiments were grown on 1.83-m-wide raised soil beds, with 2, 4, or 6 rows per bed (years 1 and 2) or 2 rows per bed only (year 3). Plant population, which was manipulated by changing either the number of rows per bed (years 1 and 2) or the within-row plant spacing (year 3), ranged from 15 to 60 plants/m2 depending on the experiment. Two sowings dates, late November and late December, were compared in years 1 and 3, while in year 2, sowings in early and late January were also included. Three genotypes (early, medium, and late maturity) were grown in years 1 and 2, and four medium-maturing genotypes were grown in year 3. In general, machine-harvested seed yields were highest in the November sowings, and declined as sowing was delayed. Physiological analyses suggested two underlying causes for the yield decline as sowing date was delayed. First and most importantly, the later sown crops flowered sooner after sowing, shortening crop duration and reducing total dry matter (TDM) production. Second, in the late January sowings of the medium- and late-maturing genotypes, harvest index (HI) declined as maturity was pushed later into autumn, exposing the crops to cooler temperatures during pod filling. Attempts to offset the decline in TDM production as sowing was delayed by using higher plant populations were unsuccessful, in part because HI decreased, apparently due to greater severity of lodging. The studies indicated that, in the near term, the yield potential of current indeterminate cultivars at the late December sowing date is adequate, given appropriate management, for commercially viable double-cropping of soybean in the MIA. In the longer term, it is suggested that development of earlier maturing, lodging-resistant genotypes that retain high HI at high sowing density may allow sowing to be delayed to early January.



Weed Science ◽  
1983 ◽  
Vol 31 (1) ◽  
pp. 63-67 ◽  
Author(s):  
P. E. Keeley ◽  
R. J. Thullen ◽  
J. H. Miller ◽  
C. H. Carter

Six cropping/weed control systems were evaluated from 1978 to 1980 for the control of yellow nutsedge (Cyperus esculentusL.). Supplementing cultivation of cotton (Gossypium hirsutumL. ‘Acala SJ-2′) with either preplant applications of fluridone {1 - methyl - 3 - phenyl - 5 - [3 - (trifluoromethyl)phenyl] -4(1H-pyridinone} or two hoeings for 2 yr preceding cotton treated with DSMA (disodium methanearsonate) and MSMA (monosodium methanearsonate) reduced populations of viable yellow nutsedge tubers 98 to 99% within 3 yr. Dry- or wet - fallowing plus tillage after barley (Hordeum vulgareL. ‘Kombyne’), and double cropping potatoes (Solanum tuberosumL. ‘White Rose’) treated with EPTC (S-ethyl dipropylthiocarbamate) with soybeans [Glycine max(L.) Merr. ‘Williams’] treated with alachlor [2-chloro - 2′, 6’ - diethyl -N- (methoxymethyl)acetanilide] for 2 yr preceding cotton, reduced populations of tubers 98 to 99% within 3 yr. A similar reduction of tubers (97%) was obtained by double cropping potatoes with milo [Sorghum bicolor(L.) Moench. ‘NK- 265′] for 2 yr preceding cotton.



1999 ◽  
Vol 35 (2) ◽  
pp. 181-199 ◽  
Author(s):  
S. R. PASCUA JR ◽  
W. VENTURA ◽  
E. O. AGUSTIN ◽  
A. T. PADRE ◽  
D. A. VALENCIA ◽  
...  

A long-term field trial was conducted to determine yield trends in relation to nutrient uptake and efficiency in different rice-based cropping systems. The cropping systems had a significant effect on wet season rice yield when residues were not recycled but had no effect otherwise. Rice yield decreased after the first year of crop residue incorporation but increased every year thereafter. Rice yield was significantly affected by residual nutrients applied to dry season crops. The highest residual effect was observed in tomato and sweet pepper to which the highest nitrogen (N), phosphorus (P) and potassium (K) rates were applied. Maize, sweet pepper, and tomato responded well to NPK application, garlic had a low response and mungbean had no response. A relay crop served as a catch crop for excess nutrients and as shade to minimize sunscald effects for tomato and sweet pepper fruits.



Sign in / Sign up

Export Citation Format

Share Document