scholarly journals Biodiversity, functional roles and ecosystem services of groundwater invertebrates

2008 ◽  
Vol 22 (2) ◽  
pp. 103 ◽  
Author(s):  
Andrew J. Boulton ◽  
Graham D. Fenwick ◽  
Peter J. Hancock ◽  
Mark S. Harvey

Recent surveys of groundwater invertebrates (stygofauna) worldwide are yielding rich troves of biodiversity, with significant implications for invertebrate systematists and phylogeneticists as well as ecologists and groundwater managers. What is the ecological significance of this high biodiversity of invertebrates in some aquifers? How might it influence groundwater ecosystem services such as water purification or bioremediation? In terrestrial ecosystems, biodiversity is typically positively correlated with rates of ecosystem functions beneficial to humans (e.g. crop pollination). However, the links between biodiversity, ecosystem function, and ecosystem services in groundwater are unknown. In some aquifers, feeding, movement and excretion by diverse assemblages of stygofauna potentially enhance groundwater ecosystem services such as water purification, bioremediation and water infiltration. Further, as specific taxa apparently play ‘keystone’ roles in facilitating ecosystem services, declines in abundance or even their extinction have serious repercussions. One way to assess the functional significance of biodiversity is to identify ‘ecosystem service providers’, characterise their functional relationships, determine how service provision is affected by community structure and environmental variables, and measure the spatio-temporal scales over which these operate. Examples from Australian and New Zealand alluvial aquifers reveal knowledge gaps in understanding the functional importance of most stygofauna, hampering effective protection of currently undervalued groundwater ecosystem services.

2018 ◽  
Vol 30 ◽  
pp. 1-39 ◽  
Author(s):  
Claudia Gutierrez-Arellano ◽  
Mark Mulligan

Land use and cover change (LUCC) is the main cause of natural ecosystem degradation and biodiversity loss and can cause a decrease in ecosystem service provision. Animal populations are providers of some key regulation services: pollination, pest and disease control and seed dispersal, the so-called faunal ecosystem services (FES). Here we aim to give an overview on the current and future status of regulation FES in response to change from original habitat to agricultural land globally. FES are much more tightly linked to wildlife populations and biodiversity than are most ecosystem services, whose determinants are largely climatic and related to vegetation structure. Degradation of ecosystems by land use change thus has much more potential to affect FES. In this scoping review, we summarise the main findings showing the importance of animal populations as FES providers and as a source of ecosystem disservices; underlying causes of agriculturalisation impacts on FES and the potential condition of FES under future LUCC in relation to the expected demand for FES globally. Overall, studies support a positive relationship between FES provision and animal species richness and abundance. Agriculturalisation has negative effects on FES providers due to landscape homogenisation, habitat fragmentation and loss, microclimatic changes and development of population imbalance, causing species and population losses of key fauna, reducing services whilst enhancing disservices. Since evidence suggests an increase in FES demand worldwide is required to support increased farming, it is imperative to improve the understanding of agriculturalisation on FES supply and distribution. Spatial conservation prioritisation must factor in faunal ecosystem functions as the most biodiversity-relevant of all ecosystem services and that which most closely links sites of service provision of conservation value with nearby sites of service use to provide ecosystem services of agricultural and economic value.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5041 ◽  
Author(s):  
Junyu Chen ◽  
Tao Cui ◽  
Huimin Wang ◽  
Gang Liu ◽  
Mat Gilfedder ◽  
...  

Water-related ecosystem services (WESs) arise from the interaction between water ecosystems and their surrounding terrestrial ecosystems. They are critical for human well-being as well as for the whole ecological circle. An urgent service-oriented reform for the utilization and supervision of WESs can assist in avoiding ecological risks and achieving a more sustainable development in the Taihu Basin, China (THB). Spatially distributed models allow the multiple impacts of land use/land cover conversion and climate variation on WESs to be estimated and visualized efficiently, and such models can form a useful component in the toolbox for integrated water ecosystem management. The Integrated Valuation of Ecosystem Services and Tradeoffs model is used here to evaluate and visualize the spatio-temporal evolution of WESs in the THB from 2000 to 2010. Results indicate that water retention service experienced a decline from 2000 to 2005 with a recovery after 2005, while there was ongoing water scarcity in urban areas. Both the water purification service and the soil retention service underwent a slight decrease over the study period. Nutrients export mainly came from developed land and cultivated land, with the hilly areas in the south of the THB forming the primary area for soil loss. The quantity and distribution of WESs were impacted significantly by the shrinkage of cultivated land and the expansion of developed land. These findings will lay a foundation for a service-oriented management of WESs in the THB and support evidence-based decision making.


2019 ◽  
Vol 5 (10) ◽  
pp. eaax0121 ◽  
Author(s):  
Matteo Dainese ◽  
Emily A. Martin ◽  
Marcelo A. Aizen ◽  
Matthias Albrecht ◽  
Ignasi Bartomeus ◽  
...  

Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield–related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.


2019 ◽  
Author(s):  
Matteo Dainese ◽  
Emily A. Martin ◽  
Marcelo A. Aizen ◽  
Matthias Albrecht ◽  
Ignasi Bartomeus ◽  
...  

ABSTRACTHuman land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by few abundant species or rely on high richness remains unclear. Using a global database from 89 crop systems, we partition the relative importance of abundance and species richness for pollination, biological pest control and final yields in the context of on-going land-use change. Pollinator and enemy richness directly supported ecosystem services independent of abundance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.


2021 ◽  
Vol 4 ◽  
Author(s):  
Emilio A. Laca

The original focus on supply of ecosystem services is shifting toward matching supply and demand. This new focus underlines the need to consider not only the amount of ecosystem services but also their spatial and temporal distributions relative to demand. Ecosystem functions and services have characteristic or salient scales that are defined by the scales at which the producing organisms or communities exist and function. Provision of ecosystem services (ES) and functions can be managed optimally by controlling the spatio-temporal distribution of landscape and community components. A simple model represents distributions of ES as kernels centered at the location of interventions such as grassland restoration or establishment of nesting habitat for pollinators. Distribution kernels allow non-habitat patches to receive ecosystem services from species they cannot support. Simulations for three contrasting ES producing organisms (bumblebees, Northern Harriers, and oak trees) show the effects of interacting distribution of interventions and demand for ES. More ES demand is met when the intervention is spread out in the landscape and demand is evenly distributed, particularly when the kernel radius is much larger than the minimum intervention required for the ES producing unit to be established. Because different functions have different reaches and saturation points, the level of ES demand met at any point in space can be modulated by controlling the spatial distribution of landscape components created by interventions. Different ES can be promoted by the same type and quantity of intervention by controlling the continuum of scales in the distribution of interventions. This work provides a conceptual and quantitative basis to consider the spatial design of interventions to match ES supply and demand.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Donna Goodridge ◽  
Kerstin Stieber Roger ◽  
Christine A. Walsh ◽  
Elliot PausJenssen ◽  
Marina Cewick ◽  
...  

Abstract Background Although abuse experienced by older adults is common and expected to increase, disclosure, reporting and interventions to prevent or mitigate abuse remain sub-optimal. Incorporating principles of harm reduction into service provision has been advocated as a strategy that may improve outcomes for this population. This paper explores whether and how these principles of harm reduction were employed by professionals who provide services to older adults experiencing abuse. Methods Thematic analysis of qualitative interviews with 23 professionals providing services to older adults experiencing abuse across three Western provinces of Canada was conducted. Key principles of harm reduction (humanism, incrementalism, individualism, pragmatism, autonomy, and accountability without termination) were used as a framework for organizing the themes. Results Our analysis illustrated a clear congruence between each of the six harm reduction principles and the approaches reflected in the narratives of professionals who provided services to this population, although these were not explicitly articulated as harm reduction by participants. Each of the harm reduction principles was evident in service providers’ description of their professional practice with abused older adults, although some principles were emphasized differentially at different phases of the disclosure and intervention process. Enactment of a humanistic approach formed the basis of the therapeutic client-provider relationships with abused older adults, with incremental, individual, and pragmatic principles also apparent in the discourse of participants. While respect for the older adult’s autonomy figured prominently in the data, concerns about the welfare of the older adults with questionable capacity were expressed when they did not engage with services or chose to return to a high-risk environment. Accountability without termination of the client-provider relationship was reflected in continuation of support regardless of the decisions made by the older adult experiencing abuse. Conclusions Harm reduction approaches are evident in service providers’ accounts of working with older adults experiencing abuse. While further refinement of the operational definitions of harm reduction principles specific to their application with older adults is still required, this harm reduction framework aligns well with both the ethical imperatives and the practical realities of supporting older adults experiencing abuse.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 419
Author(s):  
Jordi Sardans ◽  
Josep Peñuelas

Potassium, mostly as a cation (K+), together with calcium (Ca2+) are the most abundant inorganic chemicals in plant cellular media, but they are rarely discussed. K+ is not a component of molecular or macromolecular plant structures, thus it is more difficult to link it to concrete metabolic pathways than nitrogen or phosphorus. Over the last two decades, many studies have reported on the role of K+ in several physiological functions, including controlling cellular growth and wood formation, xylem–phloem water content and movement, nutrient and metabolite transport, and stress responses. In this paper, we present an overview of contemporary findings associating K+ with various plant functions, emphasizing plant-mediated responses to environmental abiotic and biotic shifts and stresses by controlling transmembrane potentials and water, nutrient, and metabolite transport. These essential roles of K+ account for its high concentrations in the most active plant organs, such as leaves, and are consistent with the increasing number of ecological and agricultural studies that report K+ as a key element in the function and structure of terrestrial ecosystems, crop production, and global food security. We synthesized these roles from an integrated perspective, considering the metabolic and physiological functions of individual plants and their complex roles in terrestrial ecosystem functions and food security within the current context of ongoing global change. Thus, we provide a bridge between studies of K+ at the plant and ecological levels to ultimately claim that K+ should be considered at least at a level similar to N and P in terrestrial ecological studies.


2021 ◽  
pp. 030913252199391
Author(s):  
Sara H Nelson ◽  
Patrick Bigger

The assertion that ‘ecosystems are infrastructure’ is now common in conservation science and ecosystem management. This article interrogates this infrastructural ontology, which we argue underpins diverse practices of conservation investment and ecosystem management focused on the strategic management of ecosystem functions to sustain and secure human life. We trace the genealogies and geographies of infrastructural nature as an ontology and paradigm of investment that coexists (sometimes in tension) with extractivist commodity regimes. We draw links between literatures on the political economy of ecosystem services and infrastructure and highlight three themes that hold promise for future research: labor, territory, and finance.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-21
Author(s):  
Huandong Wang ◽  
Yong Li ◽  
Mu Du ◽  
Zhenhui Li ◽  
Depeng Jin

Both app developers and service providers have strong motivations to understand when and where certain apps are used by users. However, it has been a challenging problem due to the highly skewed and noisy app usage data. Moreover, apps are regarded as independent items in existing studies, which fail to capture the hidden semantics in app usage traces. In this article, we propose App2Vec, a powerful representation learning model to learn the semantic embedding of apps with the consideration of spatio-temporal context. Based on the obtained semantic embeddings, we develop a probabilistic model based on the Bayesian mixture model and Dirichlet process to capture when , where , and what semantics of apps are used to predict the future usage. We evaluate our model using two different app usage datasets, which involve over 1.7 million users and 2,000+ apps. Evaluation results show that our proposed App2Vec algorithm outperforms the state-of-the-art algorithms in app usage prediction with a performance gap of over 17.0%.


Sign in / Sign up

Export Citation Format

Share Document