scholarly journals Tourists increase the contribution of autochthonous carbon to littoral zone food webs in oligotrophic dune lakes

2004 ◽  
Vol 55 (7) ◽  
pp. 701 ◽  
Author(s):  
Wade L. Hadwen ◽  
Stuart E. Bunn

Tourists can adversely influence the ecology of oligotrophic lakes by increasing algal production via direct nutrient inputs and/or re-suspension of sediments. To assess the influence of tourists on food web dynamics, we used the natural abundance of stable isotopes of carbon and nitrogen to calculate the relative importance of autochthonous and allochthonous carbon sources to littoral zone food webs across five variously visited perched dune lakes on Fraser Island, Australia. The relative importance of autochthonous (phytoplankton and periphyton) carbon to littoral zone consumers was highly variable across taxa and lakes. Despite the potential influence of algal biomass, ambient nutrient concentrations and tannin concentrations on the contribution of autochthonous carbon to littoral zone food webs, none of these variables correlated to the per cent contribution of autochthonous carbon to consumer diets. Instead, autochthonous sources of carbon contributed more to the diets of aquatic consumers in heavily visited lakes than in less visited lakes, suggesting that tourist activities might drive these systems towards an increased reliance on autochthonous carbon. The assessment of the contribution of autochthonous carbon to littoral zone food webs may represent a more robust indicator of the impact of tourists in oligotrophic lakes than standard measures of nutrient concentrations and/or algal biomass.

1997 ◽  
Vol 48 (5) ◽  
pp. 445 ◽  
Author(s):  
A. I. Robertson ◽  
M. R. Healey ◽  
A. J. King

Two billabongs on the floodplain of the Murrumbidgee River, Australia, were partitioned in half with impermeable plastic barriers and the biomass of carp was manipulated to establish high- and low-carp biomass treatments in each billabong. Measurements of benthic variables (rates of particle settlement, biofilm development, sediment respiration, macrophyte detritus decomposition, sediment solid-phase nutrient concentrations and benthic algal biomass) were performed over four months from summer to winter 1995. Rates of particle settlement were greater in the high-carp treatment of each billabong throughout the experiment. High carp biomass had a negative impact on the autotrophic component of the biofilm developing on wood blocks placed at different heights above the sediment surface but the mechanism responsible differed between billabongs. Sediment oxygen demand became greater in the presence of a higher biomass of carp during the experiment but time courses differed between billabongs. Manipulations of carp biomass did not influence algal biomass on the sediment surface, the rate of decomposition of macrophyte detritus or sediment solid-phase nutrients or nutrient ratios. The impact of carp on benthic and surficial processes was significant but the mechanisms of change differed between billabongs.


2009 ◽  
Vol 6 (12) ◽  
pp. 2935-2948 ◽  
Author(s):  
T. J. S. Cox ◽  
T. Maris ◽  
K. Soetaert ◽  
D. J. Conley ◽  
S. Van Damme ◽  
...  

Abstract. We report a 40 year record of eutrophication and hypoxia on an estuarine ecosystem and its recovery from hypereutrophication. After decades of high inorganic nutrient concentrations and recurring anoxia and hypoxia, we observe a paradoxical increase in chlorophyll-a concentrations with decreasing nutrient inputs. We hypothesise that algal growth was inhibited due to hypereutrophication, either by elevated ammonium concentrations, severe hypoxia or the production of harmful substances in such a reduced environment. We study the dynamics of a simple but realistic mathematical model, incorporating the assumption of algal growth inhibition. It shows a high algal biomass, net oxygen production equilibrium with low ammonia inputs, and a low algal biomass, net oxygen consumption equilibrium with high ammonia inputs. At intermediate ammonia inputs it displays two alternative stable states. Although not intentional, the numerical output of this model corresponds to observations, giving extra support for assumption of algal growth inhibition. Due to potential algal growth inhibition, the recovery of hypereutrophied systems towards a classical eutrophied state, will need reduction of waste loads below certain thresholds and will be accompanied by large fluctuations in oxygen concentrations. We conclude that also flow-through systems, heavily influenced by external forcings which partly mask internal system dynamics, can display multiple stable states.


2021 ◽  
Author(s):  
Frank O. Masese ◽  
Thomas Fuss ◽  
Lukas Bistarelli ◽  
Caroline Buchen-Tschiskale ◽  
Gabriel Singer

In many regions around the world, large populations of native wildlife have declined or been replaced by livestock grazing areas and farmlands, with consequences on terrestrial-aquatic ecosystems connectivity and trophic resources supporting food webs in aquatic ecosystems. The river continuum concept (RCC) and the riverine productivity model (RPM) predict a shift of carbon supplying aquatic food webs along the river: from terrestrial inputs in low-order streams to autochthonous production in mid-sized rivers. Here, we studied the influence of replacing large wildlife (mainly hippos) with livestock on the relative importance of C3 vegetation, C4 grasses and periphyton on macroinvertebrates in the Mara River, which is an African montane-savanna river known to receive large subsidy fluxes of terrestrial carbon and nutrients mediated by LMH, both wildlife and livestock. Using stable carbon (δ13C) and nitrogen (δ15N) isotopes, we identified spatial patterns of the relative importance of allochthonous carbon from C3 and C4 plants (woody vegetation and grasses, respectively) and autochthonous carbon from periphyton for macroinvertebrates at various sites of the Mara River and its tributaries. Potential organic carbon sources and invertebrates were sampled at 80 sites spanning stream orders 1 to 7, various catchment land uses (forest, agriculture and grasslands) and different loading rates of organic matter and nutrients by LMH (livestock and wildlife, i.e., hippopotamus). The importance of different sources of carbon along the river did not follow predictions of RCC and RPM. First, the importance of C3 and C4 carbon was not related to river order or location along the fluvial continuum but to the loading of organic matter (dung) by both wildlife and livestock. Notably, C4 carbon was important for macroinvertebrates even in large river sections inhabited by hippos. Second, even in small 1st -3rd order forested streams, autochthonous carbon was a major source of energy for macroinvertebrates, and this was fostered by livestock inputs fuelling aquatic primary production throughout the river network. Importantly, our results show that replacing wildlife (hippos) with livestock shifts river systems towards greater reliance on autochthonous carbon through an algae-grazer pathway as opposed to reliance on allochthonous inputs of C4 carbon through a detrital pathway.


2013 ◽  
Vol 64 (7) ◽  
pp. 585 ◽  
Author(s):  
S. J. Faggotter ◽  
I. T. Webster ◽  
M. A. Burford

Algal production in rivers fuels foodwebs, and factors controlling this production ultimately affect food availability. Conversely, excessive algal production can have negative effects on higher trophic levels. The present study examined permanent waterholes in a disconnected wet–dry tropical river to determine the controls on algal production. Primary production in this river system was high compared with arid-zone and perennially flowing tropical rivers. Phytoplankton biomass increased over the dry season but this appeared to be because waterhole volume decreased, due to evaporation. Nitrogen (N) was the key limiting nutrient for phytoplankton, with rapid N turnover times, depletion of particulate 15N-nitrogen reflecting increasing N fixationover the dry season, and N stimulation in phytoplankton bioassays. The waterholes were shallow, providing sufficient light for accumulation of benthic algal biomass. Exclosure experiments were also conducted to determine the impact of top–down control on benthic algal biomass, with no evidence that exclusion of fish and crustaceans increased benthic algal biomass. The shallow off-channel waterhole in our study had substantially higher concentrations of nutrients and chlorophyll a than did the on-channel waterholes. This suggests that future anthropogenic changes, such as increased water extraction and increased nutrient inputs, could make the waterholes more vulnerable to deteriorating water quality, such as e.g. algal blooms, low concentrations of dissolved oxygen.


2004 ◽  
Vol 49 (3) ◽  
pp. 29-36 ◽  
Author(s):  
P. Stålnacke ◽  
S.M. Vandsemb ◽  
A. Vassiljev ◽  
A. Grimvall ◽  
G. Jolankai

Since the late 1980s, the use of commercial fertilisers in most Eastern European countries has decreased at an unprecedented rate. We examined the impact of this dramatic reduction in agricultural inputs on concentrations of nutrients in four rivers in Eastern Europe: the Emajogi and Õhnejogi (Estonia), the Daugava (Latvia), and the Tisza (Hungary). Time series of nitrate (NO3-N) and phosphate (PO4-P) concentrations and data on runoff were selected to represent catchments with substantial areas of agricultural land and available time series of sufficient length and frequency. The study period was 1987-1998. We detected downward trends in nitrate-N and phosphate-P in only two of the four rivers. Our results imply that the response to the extensive decrease in agricultural intensity since the late 1980s has been slow and limited in many rivers. Corresponding results in the literature are inconclusive and comprise several examples of both decreasing and non-decreasing nutrient concentrations. Our findings, along with similar data from other studies, indicate that large cuts in nutrient inputs do not necessarily induce an immediate response, particularly in medium-sized and large catchment areas. Moreover, the difference we noted between nitrogen and phosphorus suggests that factors other than reduced fertiliser application influenced the inertia of the water quality response.


2013 ◽  
Vol 70 (3) ◽  
pp. 367-380 ◽  
Author(s):  
Bryan T. Kinter ◽  
Stuart A. Ludsin

We used an ecosystem-based modeling approach, Ecopath with Ecosim, to explore the relative importance of a top-down biotic management lever (top predator introduction) versus a bottom-up abiotic management lever (alteration of nutrient inputs) in regulating biomass in reservoir food webs. To do so, we modeled three Ohio reservoirs that varied in ecosystem productivity. For each, we simulated five hybrid striped bass (Morone chrysops × Morone saxatilis) (introduced top predator) biomass levels at three nutrient input levels (n = 15 simulations per reservoir). Nutrient inputs influenced the food web more than introduced predators within each reservoir. Further, across all three reservoirs, the impact of stocked hybrid striped bass on the equilibrium biomass of phytoplankton, prey fish (gizzard shad, Dorosoma cepedianum), and native top predators (e.g., largemouth bass, Micropterus salmoides) was <3%, <14%, and <20%, respectively, of the maximum impact of changes in nutrient inputs on these components. Thus, in mesotrophic to hypereutrophic reservoirs that are dominated by omnivorous gizzard shad, manipulating allochthonous inputs of nutrients offers agencies a more powerful means to regulate food web structure than manipulation of top predator biomass.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
S. Matern ◽  
T. Klefoth ◽  
C. Wolter ◽  
R. Arlinghaus

AbstractThe type and extent of habitats along the shoreline specify the distribution of fish in the littoral zone of lakes, but effects are likely species and size-specific and might be overwhelmed by lake-level environmental factors that drive fish abundance (e.g. trophic state). We applied a replicated transect-sampling design by electrofishing assessing fish abundance and distribution along the banks of 20 gravel pit lakes in Lower Saxony (Germany). Boosted regression trees were used to analyse the impact of different characteristic habitat types (e.g. vegetated, woody or open water zones), shoreline water depth and lake-level environmental variables on species-specific fish abundances. In contrast to earlier studies, lake-level environment and transect-level habitat type similarly influenced the abundances of differently sized fish species in the littoral zone of gravel pit lakes. The abundance of almost all fish species increased with lake productivity and extent of structured littoral habitats, mostly following non-linear relationships. Our work suggests that investments into the quality of littoral habitat, and not merely the control of nutrient inputs or other lake-level environmental factors, can promote abundance of most gravel pit lake fish species, in particular those who depend on the littoral zone for at least part of their life-cycle.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Katy Tobin ◽  
Sinead Maguire ◽  
Bernie Corr ◽  
Charles Normand ◽  
Orla Hardiman ◽  
...  

Abstract Background Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative condition with a mean life expectancy of 3 years from first symptom. Understanding the factors that are important to both patients and their caregivers has the potential to enhance service delivery and engagement, and improve efficiency. The Discrete Choice Experiment (DCE) is a stated preferences method which asks service users to make trade-offs for various attributes of health services. This method is used to quantify preferences and shows the relative importance of the attributes in the experiment, to the service user. Methods A DCE with nine choice sets was developed to measure the preferences for health services of ALS patients and their caregivers and the relative importance of various aspects of care, such as timing of care, availability of services, and decision making. The DCE was presented to patients with ALS, and their caregivers, recruited from a national multidisciplinary clinic. A random effects probit model was applied to estimate the impact of each attribute on a participant’s choice. Results Patients demonstrated the strongest preferences about timing of receiving information about ALS. A strong preference was also placed on seeing the hospice care team later rather than early on in the illness. Patients also indicated their willingness to consider the use of communication devices. Grouping by stage of disease, patients who were in earlier stages of disease showed a strong preference for receipt of extensive information about ALS at the time of diagnosis. Caregivers showed a strong preference for engagement with healthcare professionals, an attribute that was not prioritised by patients. Conclusions The DCE method can be useful in uncovering priorities of patients and caregivers with ALS. Patients and caregivers have different priorities relating to health services and the provision of care in ALS, and patient preferences differ based on the stage and duration of their illness. Multidisciplinary teams must calibrate the delivery of care in the context of the differing expectations, needs and priorities of the patient/caregiver dyad.


2021 ◽  
Vol 13 (12) ◽  
pp. 6907
Author(s):  
Salomée Ruel ◽  
Anicia Jaegler

Zinn et al. (2018) and Esper et al. (2020) call for more research on gender diversity in Supply Chain Management, and our study responds to that call. We analyze the career path of 1081 international graduates from a higher degree program in Supply Chain Management from 2000 to 2017 to assess the impact of gender and expatriation choice on hierarchical progression. We explore two variables that may affect graduates’ career paths, namely, their gender and their expatriation choices, and compare their relative importance. Our analysis shows that there were, on average, 33.5% women recruited in the MSc and that this has not significantly changed over the years. It also shows that gender significantly influences the number of years spent at each level in the career hierarchy and the level reached. Regarding expatriation choice, this variable has some significant impacts on career progression. Finally, statistics indicate that gender has a far greater influence on career progression than expatriation choice. Overall, this study proves the difficulties for women in enjoying the same career progression as men in the field of Supply Chain Management.


Sign in / Sign up

Export Citation Format

Share Document