Response in Plant Water Status to Integrated Values of Soil Matric Potential Calculated From Soil Water Depletion by a Field Bean Crop

1980 ◽  
Vol 7 (1) ◽  
pp. 51 ◽  
Author(s):  
AJ Karamanos

Water deficits were induced in a field bean crop using Polythene rainout shelters to study the crop response to changes in soil matric potential integrated over the zone of soil water extraction. Integrated values of soil matric potential (Ψm,s) were derived from the values of matric potential (Ψm,s) at four separate depths weighted according to the corresponding rates of water depletion at the time of measurement. Linear relationships existed between Ψm,s and variations in leaf water potential before sunrise (Ψd) and in the afternoon (Ψa). The total resistance to daily water flow in the soil-plant system was found to increase linearly with falling Ψm,s. The water flux from separate soil layers indicated that the deeper the layer, the greater the resistance to water uptake from soils at a given value of soil water potential. Such an increase in resistance with soil depth, which considerably reduced the availability of soil water in the deeper soil layers, was attributed mainly to plant factors.

2010 ◽  
Vol 20 (3) ◽  
pp. 585-593 ◽  
Author(s):  
Ana Centeno ◽  
Pilar Baeza ◽  
José Ramón Lissarrague

Limited water supply in arid and semiarid Mediterranean environments demands improving irrigation efficiency. The purpose of this study was to determine a functional relationship between soil water availability and wine grape (Vitis vinifera) water status to determine a threshold value of soil matric potential to trigger irrigation. Seasonal trends of soil water potential, leaf water potential, and stomatal conductance (gS) of ‘Tempranillo’ wine grape were determined in two deficit irrigation treatments replenishing 45% and 30% of the reference evapotranspiration, and in a third non-irrigated treatment during 2001 and 2002. Soil water potential was measured with granular matrix soil moisture sensors placed at 0.3 m (Ψ0.3), 0.6 m (Ψ0.6), and 1.2 m (Ψ1.2) depths. The sensors at 0.3 m depth quickly responded to irrigation by increasing Ψ0.3 levels. At the 0.6 m depth, Ψ0.6 progressively decreased, showing significant differences between T1 and the rest of the treatments, while no significant differences in Ψ1.2 were found. All relationships between profile soil matric potential and leaf water potential and gS were highly correlated. After integrating our data with previous studies, we suggest a whole profile soil water potential value of –0.12 MPa as threshold to trigger irrigation and avoid severe water stress during berry growth.


Irriga ◽  
2018 ◽  
Vol 1 (01) ◽  
pp. 246
Author(s):  
Lígia Borges Marinho ◽  
José Antonio Frizzone ◽  
João Batista Tolentino Júnior ◽  
Janaina Paulino ◽  
Danilton Luiz Flumigan ◽  
...  

DINÂMICA DA ÁGUA NO SISTEMA SOLO-PLANTA NO CULTIVO DA PIMENTA TABASCO SOB DÉFICIT HÍDRICO1  LÍGIA BORGES MARINHO2; JOSÉ ANTONIO FRIZZONE3; JOÃO BATISTA TOLENTINO JÚNIOR4; JANAÍNA PAULINO5; DANILTON LUIZ FLUMIGNAN6 E DIEGO BORTOLOTI GÓES3    (1) Artigo extraído da tese do primeiro autor (2) Departamento Tecnologia e Ciências Sociais, Universidade do Estado da Bahia, av. Edgard Chastinet, São Geraldo, CEP 48905-680, Juazeiro, BA. Fone (74) 3611-7363. E-mail: [email protected](3) Departamento de Engenharia de Biossistemas/Escola Superior de Agricultura “Luiz de Queiroz” USP, Av. Pádua Dias, 11, CEP 13.418-900, Piracicaba/SP, E-mail(s): [email protected], [email protected]; (4) Campus Curitibanos, Universidade Federal de Santa Catarina, Curitibanos, SC. [email protected] (5) Universidade Federal de Mato Grosso UFMT, campus Sinop, Avenida Alexandre Ferronato Nº 1.200. Bairro: Setor Industrial. CEP: 78.550-000,  Sinop-MT, Email: [email protected] (6) Empresa Brasileira de Pesquisa Agropecuária, Agropecuária Oeste. Rodovia BR 163, km 253, Zona Rural, 79804970 - Dourados, MS,  Email: [email protected]  1 RESUMO  O objetivo da pesquisa foi acompanhar a variação da condição hídrica do solo e da planta de pimenta ‘Tabasco’ em função dos manejos de déficits hídricos impostos e determinar seu coeficiente de estresse hídrico. O experimento foi conduzido em ambiente protegido, no Departamento de Engenharia de Biossistemas da ESALQ - USP, Piracicaba-SP, de setembro de 2009 a julho de 2010. O delineamento experimental foi blocos casualizados, com quatro repetições, utilizando-se lâminas de irrigação a 100, 80, 60 e 40% da evapotranspiração da cultura diferenciadas a partir da fase vegetativa e da fase reprodutiva. O potencial da água na folha e no solo foi aferido com a câmara de pressão e tensiômetros, respectivamente. Houve variação do potencial mátrico, da extração de água no solo e do potencial de água na folha em função das lâminas e das épocas de diferenciação. Menores potenciais mátricos foram verificados quando o déficit de irrigação foi inicializado na fase vegetativa da pimenta. Os valores de coeficiente de estresse hídrico e o potencial de água na folha, ao alvorecer, indicaram que as pimenteiras estavam sob estresse moderado e severo, sendo a época reprodutiva da pimenta Tabasco a mais sensível à restrição hídrica.Palavras-chave: Capsicum frutencens L, tensiômetro, potencial da água no solo.                                                        MARINHO, L. B.; FRIZZONE, J. A.; TOLENTINO JÚNIOR, J. B.; PAULINO, J.; FLUMIGNAN, D. L.; GÓES, D. B.WATER DYNAMICS IN SOIL-PLANT SYSTEM IN THE CULTIVATION OF PEPPER TABASCO UNDER WATER DEFICIT  2 ABSTRACT The objective of the research was to determine the change in soil water condition and in Tabasco pepper plant according to the managements of water deficits. The experiment was conducted in a greenhouse at the Department of Biosystems Engineering of ESALQ - USP, Piracicaba-SP, from September 2009 to July 2010. The experimental design was randomized blocks with four replications, using irrigation depths to 100, 80, 60 and 40% of crop evapotranspiration in the vegetative phase and reproductive phase. The soil matric potential was measured by tensiometers installed at 0-20 and 20-40 cm depth. The most negative values of matric potential occurred in treatments submitted to the greater water deficit treatments that had higher water restriction imposed by the vegetative phase. For these, greater increase in water extraction in the deepest layer (40 cm) were also found.There were differences in matric potential of the soil, in ground water extraction and in leaf water potential in relation to the water depths and differentiation phases. The deficit irrigation that started in the vegetative phase led to greater reduction in soil matric potential due to the accumulated water deficit. The pepper plants have moderate to severe sensitivity to water deficit in the soil, with a higher sensitivity of the plants when water restriction is imposed during reproductive stages than when it is imposed during growing stages. Keywords : Capsicum frutencens, tensiometer; soil water potential


1998 ◽  
Vol 25 (3) ◽  
pp. 353 ◽  
Author(s):  
C.R. Jensen ◽  
V.O. Mogensen ◽  
H.-H. Poulsen ◽  
I.E. Henson ◽  
S. Aagot ◽  
...  

Drought responses in leaves of lupin (Lupinus angustifolius L., cv. Polonez) were investigated in plants grown in lysimeters either in a sand or in a loam soil in the field. Abscisic acid (ABA) content, water potential (ψl) and conductance to water vapour (gH2O) were determined in leaves of both irrigated plants and in plants exposed to gradual soil drying. Amorning-peak of leaf ABA content was found in both fully watered and droughted plants. During soil drying which, on both soils types, only decreased soil water potential of the upper soil layers, mid-day leaf ABA content increased relative to that in fully irrigated plants before any appreciable decreases occurred in ψl. In the part of the soil profile from which water was taken up (0–60 cm depth), gH2O decreased when the relative available soil water content (RASW) on sand was below 12% and RASW on loam, below 30%. At this point the average soil water matric potential (ψsoil) on sand was less than –0.13 MPa and the fraction of roots in ‘wet’ soil was 0.12, while on loam, the fraction of roots in ‘wet’ soil was 0.44 while y soil was similar to that on sand. A critical leaf ABA content of 300–400 ng/g FW was associated with the onset of stomatal closure on both soil types. We suggest that the initial stomatal closure is controlled by ABA which originates from the roots where its production is closely related to ψsoiland the water potential of the root surface and that ψsoil is a more important parameter than RASW or the fraction of roots in ‘wet’ soil for affecting leaf gas exchange. Further drying on both soils led to further increases in leaf ABA and declines in ψl and gH2O. In order to gain further insight, experiments should be designed which combine signalling studies with simulation studies, which take account of soil water potential, root contact area and water flux when calculating the water status at the root surface in the soil-plant-atmosphere-continuum.


2021 ◽  
Author(s):  
Marinos Eliades ◽  
Adriana Bruggeman ◽  
Hakan Djuma ◽  
Melpomeni Siakou ◽  
Panagiota Venetsanou ◽  
...  

<p>The water storage in soil is a dynamic process that changes with soil, vegetation and climate properties. Water retention curves, that describe the relationship between the soil water content (θ) and the soil water potential (ψ), are used to model soil water flow and root water uptake by the plants. The overall objective of this study is to derive the retention curves of soils at two forested (Agia Marina, Platania) and two irrigated (Galata, Strakka) sites in Cyprus from in-situ soil moisture and soil water potential observations. <br>The long-term (1980 – 2010) average annual rainfall at Strakka olive grove (255 m elevation), Agia Marina P. brutia forest (640 m), Galata peach orchard (784 m) and Platania P. brutia forest (1160 m) is 298, 425, 502 and 839 mm, respectively.  The average soil depth at Agia Marina is 14 cm, while at other sites it is around 1 m. We installed a total of 18 TEROS21 soil water potential sensors, 37 5TM and 19 SMT100 soil moisture sensors, at different soil depths at the four sites. <br>Results from January 2019 to January 2021 show differences in the water retention curves of the four sites due to different soil textures. At the forested sites, θ reached wilting point at the summer period, indicating that trees extend their roots beyond the soil profile, to the bedrock in order to survive. At the irrigated sites, θ exceeds field capacity during irrigation, indicating over-irrigation. We found different water retention relations after rainfall and after irrigation, indicating that irrigation has an uneven spatial distribution. These findings suggest that the irrigation in these fields is not optimal and farmers may need to increase the number of irrigation drippers, while reducing the irrigation amount per dripper. From a monitoring perspective, increasing the number of sensors may give a better representation of the soil moisture conditions. <br>The research has received financial support from the ERANETMED3 program, as part of the ISOMED project (Environmental Isotope Techniques for Water Flow Accounting), funded through the Cyprus Research and Innovation Foundation.</p>


1970 ◽  
Vol 50 (4) ◽  
pp. 363-370 ◽  
Author(s):  
AGUSTIN A. MILLAR ◽  
MURRAY E. DUYSEN ◽  
ENOCH B. NORUM

Total water potential of barley (Hordeum vulgare L.) leaves from plants grown under greenhouse and growth chamber conditions was divided into pressure and osmotic potential components, and their relationship to leaf relative water content was determined. Pressure potential approached zero at a water potential of about −32 bars, and a relative water content of about 65%. A change in the elasticity of leaves occurred at about 2 bars pressure potential and about −12 bars water potential. First visible wilting was observed between 75 and 80% relative water content. Transpiration decreased as leaf relative water content decreased but transpiration was independent of soil water content until about 16% (0.6 bar soil suction). First visible wilting of barley leaves was observed at soil water content between 9 and 13% (1–5 bars soil suction). Water potential and leaf relative water content decreased as the soil matric potential decreased. There was a shift to lower relative water content and water potential values as plants became older when the soil matric potential decreased.


Weed Science ◽  
2007 ◽  
Vol 55 (4) ◽  
pp. 341-345 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Marcos J. Oliveira

The objective of this research was to develop a model to predict common cocklebur seedling emergence in spring tillage and no-spring-tillage systems in the presence and absence of a soybean canopy. A Weibull function was used to accumulate heat units (i.e., growing degree days) at a 2.5 cm soil depth on days when mean soil temperature, soil water potential, and soil thermal fluctuation were above established thresholds. The base temperature, soil water potential, and soil thermal fluctuation thresholds used for model development were 17 C, −100 kPa, and 7.5 C, respectively. A single function adequately described common cocklebur seedling emergence in the presence and absence of drill-seeded soybean from data combined over an artificial (2004) and natural seedbank (2005) (R2= 0.986). Model parameterization differed between the artificial and natural seedbank in the absence of spring tillage, but emergence was adequately described, regardless of soybean presence. Separate parameter estimates for the artificial and natural seedbanks were needed to adequately describe emergence in the system without spring tillage (R2= 0.975 to 0.984). The ability of the model to account for reduced emergence when soil moisture is limited or when daily thermal fluctuation requirements are not met could assist practitioners with assessments associated with field scouting for weeds as well as other management decisions.


1986 ◽  
Vol 58 (4) ◽  
pp. 185-190 ◽  
Author(s):  
Markku Tenhovuori

The time for 50 % emergence of wheat and barley increases linearly with decreasing matric potential. This increase actually begins at matric pressures above pF 2.7. The rise in temperature makes emergence faster with in the range of minimum temperature (3.1°C for wheat and 1.9°C for barley) and the temperature where growth begins to slow down(about 31°C for wheat and 27°C for barley).The optimum range for 50 % emergence was obtained at a matric pressure range of pF 1.3—2.7 or —5.0— —0.20 m (water column) at a temperature of 10°C, which quite well corresponds to the situation in Finland during the emergence period in spring. A clear increase can be observed in the required heat sum for wheat and barley when the soil water potential reaches a critical point which was pF 2.8 or—6.3m for wheat and pF 2.7 or —5.0 m for barley. The total emergence as a function of matric potential for wheat and barley was determined over a period of 30 days at 10°C. In the wet side, pF 1,0 can be considered a limit, the total emergence decreasing with lower values. In the dry side, a corresponding decrease can be noticed in total emergence at pF above 3.0. The water uptake by seeds speeded up with increasing temperature from 10 to 25°C. Radicles of wheat and barley began to appear when the water uptake by the seed was approximately 50—60 % of the initial weight of the seed. The initial water uptake caused by the moistening of the pericarp due to capillarity was about 3 % for wheat and 5 % for barley at a soil water potential of pF 1.2.


2021 ◽  
Vol 14 (6) ◽  
pp. 3269-3294
Author(s):  
Anna B. Harper ◽  
Karina E. Williams ◽  
Patrick C. McGuire ◽  
Maria Carolina Duran Rojas ◽  
Debbie Hemming ◽  
...  

Abstract. Drought is predicted to increase in the future due to climate change, bringing with it myriad impacts on ecosystems. Plants respond to drier soils by reducing stomatal conductance in order to conserve water and avoid hydraulic damage. Despite the importance of plant drought responses for the global carbon cycle and local and regional climate feedbacks, land surface models are unable to capture observed plant responses to soil moisture stress. We assessed the impact of soil moisture stress on simulated gross primary productivity (GPP) and latent energy flux (LE) in the Joint UK Land Environment Simulator (JULES) vn4.9 on seasonal and annual timescales and evaluated 10 different representations of soil moisture stress in the model. For the default configuration, GPP was more realistic in temperate biome sites than in the tropics or high-latitude (cold-region) sites, while LE was best simulated in temperate and high-latitude (cold) sites. Errors that were not due to soil moisture stress, possibly linked to phenology, contributed to model biases for GPP in tropical savanna and deciduous forest sites. We found that three alternative approaches to calculating soil moisture stress produced more realistic results than the default parameterization for most biomes and climates. All of these involved increasing the number of soil layers from 4 to 14 and the soil depth from 3.0 to 10.8 m. In addition, we found improvements when soil matric potential replaced volumetric water content in the stress equation (the “soil14_psi” experiments), when the critical threshold value for inducing soil moisture stress was reduced (“soil14_p0”), and when plants were able to access soil moisture in deeper soil layers (“soil14_dr*2”). For LE, the biases were highest in the default configuration in temperate mixed forests, with overestimation occurring during most of the year. At these sites, reducing soil moisture stress (with the new parameterizations mentioned above) increased LE and increased model biases but improved the simulated seasonal cycle and brought the monthly variance closer to the measured variance of LE. Further evaluation of the reason for the high bias in LE at many of the sites would enable improvements in both carbon and energy fluxes with new parameterizations for soil moisture stress. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES or as a general way to improve land surface carbon and water fluxes in other models. In addition, using soil matric potential presents the opportunity to include plant functional type-specific parameters to further improve modeled fluxes.


2021 ◽  
Author(s):  
Adil Salman ◽  
Wolfgang Durner ◽  
Deep C. Joshi ◽  
Mahyar Naseri

<p>Drought and climatic change are among the main environmental stressors for the water and soil qualities. Soil water potential is the major soil-related factor controlling water availability to plants and their evapotranspiration. It consists of two main components: matric and osmotic potential. Although the effect of matric potential on plant evapotranspiration has been extensively studied under various conditions, there is still a lack of quantitative studies on the effects of osmotic potential on evapotranspiration.</p><p>In our study, we investigated the influence of soil osmotic potential on the evapotranspiration rate and cumulative evapotranspiration of grass planted in small laboratory lysimeters. A sandy loam soil material was packed in four lysimeters with a volume of 6000 cm<sup>3</sup> and equal bulk density. The soil material was air dried, freed from roots and passed through a 2 mm sieve. Each lysimeter was equipped with soil sensors at two different depths to monitor soil moisture, bulk electrical conductivity, temperature, and matric potential. To obtain continuous mass balance measurements, each lysimeter was placed on a balance connected to the computer. Grass seeds were planted in each lysimeter at the same density and irrigated with distilled water until plant height was 12 cm. Irrigation water of two different qualities (EC= 0 and 4.79 dS/m) was then applied to produce different levels (0 and -0.17 MPa) of osmotic potential. The volumetric water content was adjusted to a value between 15 and 20 % in each lysimeter during the grass growth period. When the volumetric water content reached 15 %, irrigation water was added to the lysimeters to increase it to 20 %. Data were collected to calculate changes in osmotic potential relative to changes in total soil water potential. In addition, the relationship between osmotic potential and evapotranspiration rate during the growing season was determined.</p><p>Our results indicate a controlling role of soil osmotic potential on total soil water potential. This role results a significant reductions in evapotranspiration in response to increases in osmotic potential, in addition to effects on plant health. Osmotic potential has a significant function on total soil water potential when the soil becomes dry and poor water qualities are used in irrigation.</p>


1979 ◽  
Vol 71 (6) ◽  
pp. 980-982 ◽  
Author(s):  
L. G. Heatherly ◽  
W. J. Russell

Sign in / Sign up

Export Citation Format

Share Document