scholarly journals Analysis of effects in wheat of high temperature on grain filling attributes estimated from mathematical models of grain filling

2003 ◽  
Vol 141 (2) ◽  
pp. 203-212 ◽  
Author(s):  
M. ZAHEDI ◽  
C. F. JENNER

Compared with growth at 20/15°C (day/night), exposure of wheat (Triticum aestivum L.) plants to moderately high temperature (30/25°C) significantly decreased grain weight through shortening the duration of grain filling, combined with small (or no) positive increases in the rate of grain filling. Several mathematical models of grain filling were assessed for their suitability as means of analysing these effects of temperature. The ordinary logistic model was found to be the most appropriate model and was used for the analysis of grain filling responses in four cultivars differing in their responses. Genotypic variation in response to temperature was observed for both rate and duration of grain filling, but the variation for the duration of grain filling among cultivars was small at the higher temperature. Significant correlation was found between single grain weight with the rate, but not with the duration, of grain filling at high temperature, which indicated an important role for synthetic processes involved in grain filling in the temperature sensitivity of wheat cultivars. As they are independent traits, both rate and duration are required selection criteria for the improvement of heat tolerance. Responses of one attribute estimated from the logistic model, the inflection point of the course of grain filling, may give insight into a temperature response that is distinguishable from that associated with the duration of grain filling. The inflection point appears to be worth including as a criterion in selecting for high temperature tolerance in wheat.

1994 ◽  
Vol 21 (6) ◽  
pp. 791 ◽  
Author(s):  
CF Jenner

As temperature rises above 18-22�C, the observed decrease in the duration of deposition of dry matter in the kernel is not accompanied by a compensating increase in the rate of grain filling with the result that grain weight (and yield) is diminished at high temperature. Reduced starch content accounts for most of the reduction in grain dry matter at high temperature. Responses to temperature in the low temperature range, 20-30�C (the LTR), could possibly be ascribed to the temperature response characteristics of the reaction catalysed by soluble starch synthase (SSS), the enzyme synthesising starch. However, the rate of cell enlargement and the rate of accumulation of nitrogen in the grain also do not increase much as temperature rises, so other explanations are conceivable for the temperature responses in the LTR. Variation amongst cultivars of wheat in tolerance of high temperature is evident in the LTR. At temperatures above 30�C (in the high temperature range (HTR) between 30 and 40�C), even for short periods, the rate of starch deposition is slower than that observed at lower temperatures, an effect which is carried over after transfer from high to lower temperatures. This response is attributable to a reduction in the activity, possibly due to thermal denaturation, of SSS. Several forms of SSS are found in cereal endosperm, and some forms may be more tolerant of high temperature than others. Loss of enzyme activity at high temperature is swift, but is partly restored some time after transfer from hot to cool conditions. There appear to be two distinct mechanisms of response to elevated temperature, both resulting in a reduced grain weight through reduced starch deposition, but one of them is important only in the range of temperature above 30�C.


1999 ◽  
Vol 26 (5) ◽  
pp. 453 ◽  
Author(s):  
Roxana Savin ◽  
Daniel F. Calderini ◽  
Gustavo A. Slafer ◽  
Leonor G. Abeledo

Individual grain weight is an important source of variation for grain yield in wheat. The aim of this study was to investigate the effect of short periods of high temperature immediately pre-anthesis, or during post-anthesis, on grain weight under field conditions. Thus, two wheat cultivars of different grain weight potential were sown on four different sowing dates to provide different temperature conditions during the pre- and post-anthesis periods. In addition, for two sowings, acrylic boxes were installed to increase spike temperature either immediately before anthesis, or during the lineal phase of the grain-filling period. Final grain weight was significantly affected by sowing date, genotype and grain position on the spike. Grain weight showed a clear relationship with the average temperature of the grain filling period, but this relationship was either linear or curvilinear, depending on the cultivar. Both high temperature treatments, i.e. at pre- or post-anthesis, significantly diminished final grain weight, and their effect was similar with the exception of heavier grains, which were unresponsive to the high temperature treatment at pre-anthesis. Finally, a better understanding of final grain weight was reached when temperatures from the pre-anthesis period were included in the analysis of grain weight response to temperature.


2014 ◽  
Vol 281 (1776) ◽  
pp. 20132744 ◽  
Author(s):  
Lev Y. Yampolsky ◽  
Tobias M. M. Schaer ◽  
Dieter Ebert

Many organisms have geographical distributions extending from the tropics to near polar regions or can experience up to 30°C temperature variation within the lifespan of an individual. Two forms of evolutionary adaptation to such wide ranges in ambient temperatures are frequently discussed: local adaptation and phenotypic plasticity. The freshwater planktonic crustacean Daphnia magna, whose range extends from South Africa to near arctic sites, shows strong phenotypic and genotypic variation in response to temperature. In this study, we use D. magna clones from 22 populations (one clone per population) ranging from latitude 0° (Kenya) to 66° North (White Sea) to explore the contributions of phenotypic plasticity and local adaptation to high temperature tolerance. Temperature tolerance was studied as knockout time (time until immobilization, T imm ) at 37°C in clones acclimatized to either 20°C or 28°C. Acclimatization to 28°C strongly increased T imm , testifying to adaptive phenotypic plasticity. At the same time, T imm significantly correlated with average high temperature at the clones’ sites of origin, suggesting local adaptation. As earlier studies have found that haemoglobin expression contributes to temperature tolerance, we also quantified haemoglobin concentration in experimental animals and found that both acclimatization temperature (AccT) and temperature at the site of origin are positively correlated with haemoglobin concentration. Furthermore, Daphnia from warmer climates upregulate haemoglobin much more strongly in response to AccT, suggesting local adaptation for plasticity in haemoglobin expression. Our results show that both local adaptation and phenotypic plasticity contribute to temperature tolerance, and elucidate a possible role of haemoglobin in mediating these effects that differs along a cold–warm gradient.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tânia Pinheiro ◽  
Ka Ying Florence Lip ◽  
Estéfani García-Ríos ◽  
Amparo Querol ◽  
José Teixeira ◽  
...  

AbstractElucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular robustness of strains, providing more economically and sustainable processes. We investigated the differential responses of three distinct Saccharomyces cerevisiae strains, an industrial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and an industrial bioethanol strain, Ethanol Red, grown at sub- and supra-optimal temperatures under chemostat conditions. We employed anaerobic conditions, mimicking the industrial processes. The proteomic profile of these strains in all conditions was performed by sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS), allowing the quantification of 997 proteins, data available via ProteomeXchange (PXD016567). Our analysis demonstrated that temperature responses differ between the strains; however, we also found some common responsive proteins, revealing that the response to temperature involves general stress and specific mechanisms. Overall, sub-optimal temperature conditions involved a higher remodeling of the proteome. The proteomic data evidenced that the cold response involves strong repression of translation-related proteins as well as induction of amino acid metabolism, together with components related to protein folding and degradation while, the high temperature response mainly recruits amino acid metabolism. Our study provides a global and thorough insight into how growth temperature affects the yeast proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.


Euphytica ◽  
2005 ◽  
Vol 141 (1-2) ◽  
pp. 41-48 ◽  
Author(s):  
Valeria S. Passarella ◽  
Roxana Savin ◽  
Gustavo A. Slafer

Author(s):  
Tânia Pinheiro ◽  
Ka Ying Florence Lip ◽  
Estéfani García-Ríos ◽  
Amparo Querol ◽  
José Teixeira ◽  
...  

AbstractElucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular robustness of strains, providing more economically and sustainable processes. We investigated the differential responses of three distinct Saccharomyces cerevisiae strains, an industrial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and an industrial bioethanol strain, Ethanol Red, grown at sub- and supra-optimal temperatures under chemostat conditions. We employed anaerobic conditions, mimicking the industrial processes. The proteomic profile of these strains was performed by SWATH-MS, allowing the quantification of 997 proteins, data available via ProteomeXchange (PXD016567). Our analysis demonstrated that temperature responses differ between the strains; however, we also found some common responsive proteins, revealing that the response to temperature involves general stress and specific mechanisms. Overall, sub-optimal temperature conditions involved a higher remodeling of the proteome. The proteomic data evidenced that the cold response involves strong repression of translation-related proteins as well as induction of amino acid metabolism, together with components related to protein folding and degradation while, the high temperature response mainly recruits amino acid metabolism. Our study provides a global and thorough insight into how growth temperature affects the yeast proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.


1998 ◽  
Vol 49 (8) ◽  
pp. 1287 ◽  
Author(s):  
M. A. B. Wallwork ◽  
S. J. Logue ◽  
L. C. MacLeod ◽  
C. F. Jenner

Short periods of high temperatures (up to 35°C) during mid grain filling appear to reduce yield and quality in barley. Plants of 3 malting barley varieties, Schooner, Arapiles, and Sloop (a new South Australian malting variety), were grown under constant environment conditions from germination to maturity and exposed to 5 days of high temperatures (up to 35°C) during mid grain filling. Schooner and Sloop showed similar patterns of accumulation of dry matter under control conditions (21°C/16°C, day/night temperature) and in response to high temperatures. In all varieties, the reduction in starch accumulation represented the most significant detrimental effect of high temperature and made the greatest contribution to the reduction in final grain weight. The reduction in absolute grain nitrogen (N) in heat-treated Arapiles grains represents a potentially important response under high temperature conditions. In this study, water loss did not have a decisive role in the termination of grain filling. Continued accumulation of endosperm dry matter at low moisture levels suggested that water distribution and/or components of water potential may be more important than overall water content in the cessation of grain filling. Final grain composition depended not only on the amount of endosperm storage component present in the grain but also on the contribution of the non-endosperm components (including the embryo and husk) to final grain dry weight. In some cases, changes in the contribution made by the non-endosperm components of the grain to final grain weight masked important high temperature effects on key endosperm storage components. Hot water extract (HWE) values were similar within treatments and ranged from 73% to 78%. High temperature exposure reduced HWE for all varieties. Malt b-glucan was lower in heat-treated grains than in control grains. Despite relatively high malt protein levels in all varieties, higher free amino N levels in heat-treated grains indicated a higher protein modification than in control grains.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 112
Author(s):  
Kambham Raja Reddy ◽  
Akanksha Seghal ◽  
Salah Jumaa ◽  
Raju Bheemanahalli ◽  
Naqeebullah Kakar ◽  
...  

Extreme temperatures are considered one of the main constraints that limit the growth and development of rice. We elucidated the root and shoot developmental plasticity of 64 rice genotypes during early seedling establishment, using the sunlit plant growth chambers at 22/14 (low), 30/22 (optimum), and 38/30 °C (high) day/night temperatures. Low temperature severely inhibited 23 traits, such as shoot (68%), root (57%), and physiological (35%) attributes. On the contrary, the high temperature positively affected most of the shoot (48%) and root (31%) traits, except root diameter and root/shoot ratio, compared with the optimum. Alternatively, leaf chlorophyll fluorescence-associated parameters declined under low (34%) and high (8%) temperatures. A weak correlation between cumulative high-temperature response index (CHTRI) and cumulative low-temperature response index (CLTRI) indicates the operation of different low- and high-temperature tolerance mechanisms at the early seedling stage. Groups of distinct rice genotypes associated with low or high-temperature tolerance were selected based on CHTRI and CLTRI. The genotypes that commonly performed well under low and high temperatures (IR65600-81-5-2-3, CT18593-1-7-2-2-5, RU1504114, RU1504122, Bowman, and INIA Tacuari) will be valuable genetic resources for breeders in developing early-season high- and low-temperature-tolerant genotypes for a broad range of both tropical and temperate rice-growing environments.


2016 ◽  
Vol 48 (1) ◽  
pp. 72-84 ◽  
Author(s):  
Ji-Ung Jeung ◽  
Young-Seop Shin ◽  
Im-Soo Choi ◽  
Jae-Ki Chang ◽  
Myeong-Ki Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document