Equine blastocyst production under different incubation temperatures and different CO2 concentrations during early cleavage

2019 ◽  
Vol 31 (12) ◽  
pp. 1823
Author(s):  
J. G. Brom-de-Luna ◽  
R. M. Salgado ◽  
H. S. Canesin ◽  
M. Diaw ◽  
K. Hinrichs

Some basic parameters for equine invitro embryo production have not yet been established, including the optimum temperature for maturation and embryo culture, and the optimum CO2 concentration and pH during early embryo development. To explore this, we first performed cultures in incubators set at 37.2°C, 37.7°C or 38.2°C. At these temperatures, the corresponding maturation rates were 33%, 38% and 42%; cleavage rates were 84%, 86% and 88%; and blastocyst rates were 35%, 44% and 44% per injected oocyte. These rates did not differ significantly (P>0.2). We then evaluated three different CO2 concentrations (6%, 6.5% or 7% CO2) in 5% O2 for culture over Days 0–5 after intracytoplasmic sperm injection, using a commercial human embryo medium with added serum, at 38.2°C. The pH values of these media were 7.36, 7.33 and 7.29 respectively. In the presence of 6%, 6.5% or 7% CO2, cleavage rates were 68%, 80% and 70% respectively, and blastocyst rates per injected oocyte were 42%, 54% and 27% respectively. The blastocyst rate for the 7% CO2 treatment was significantly lower than that for the 6.5% CO2 treatment (P<0.05). We conclude that equine invitro embryo production is equally effective within the range of 37.2–38.2°C, but that equine early cleavage stage development is sensitive to small changes in CO2 atmosphere and/or medium pH.

2019 ◽  
Vol 31 (1) ◽  
pp. 161
Author(s):  
J. Brom-de-Luna ◽  
R. Salgado ◽  
H. Canesin ◽  
M. Diaw ◽  
K. Hinrichs

Intracytoplasmic sperm injection (ICSI) is currently being used for equine in vitro embryo production for both research and clinical purposes. However, some basic parameters for in vitro embryo production, such as the optimum incubator temperature and the optimum CO2 concentration/pH of medium for early embryo development, have not yet been established in the horse. The incubation temperature used by many laboratories for equine in vitro embryo production is 38.2°C, whereas the range of normal rectal temperature in the horse is 37.2 to 38.3°C. In Exp. 1, we evaluated maturation, cleavage, and blastocyst rates under 3 different culture temperatures. Cumulus-oocyte complexes were recovered from slaughterhouse-derived ovaries and shipped overnight at room temperature. Oocyte maturation was performed concurrently in separate incubators set to 37.2, 37.7, or 38.2°C. Mature oocytes were subjected to ICSI, then cultured in mixed gas (6% CO2, 5% O2, and remainder N2) at the same temperature at which they were matured. Embryo culture media used were a commercial human medium (global) for Days 0 to 5, then DMEM/F-12 from Day 5 to 10, both with 10% fetal bovine serum (FBS). In Exp. 2, we evaluated 3 different CO2 concentrations (6, 6.5, or 7% CO2) in mixed gas for the Day 0 to 5 culture in global+FBS, at 38.2°C. Cumulus-oocyte complexes were recovered from live mares by transvaginal aspiration and held overnight at room temperature; all other parameters remained the same as for Exp. 1. Data were analysed by Fisher’s exact test. In Exp. 1, a total of 280 oocytes were utilised; the outcomes for the 37.2, 37.7, and 38.2°C treatments were, respectively: maturation rates of 33, 38, and 42%; cleavage rates of 84, 86, and 88%; and blastocyst rates per injected oocyte of 35, 44, and 44%. There were no significant differences among the 3 temperature treatments for any parameter (P>0.2). In Exp. 2, the pH of the global+FBS medium was 7.38, 7.35, and 7.3 for 6, 6.5, and 7% CO2, respectively. A total of 106 mature oocytes underwent ICSI; the outcomes for the 3 CO2 atmospheres, respectively, were cleavage rates of 68, 80, and 70% and blastocyst rates per injected oocyte of 42, 54, and 27%. The blastocyst rate for the 7% CO2 treatment was significantly lower than that for the 6.5% CO2 treatment (P<0.05). These results indicate that equine in vitro embryo production is equally effective throughout the range of normal equine body temperature, and that equine blastocyst production is sensitive to small changes in CO2 atmosphere/pH of medium during early cleavage-stage development. Research was supported by the Clinical Equine ICSI Program, Texas A&M University, the Link Equine Research Endowment, Texas A&M University, and Fonds en Santé Équine (FSÉ), Faculté de Médecine Vétérinaire, and Université de Montréal.


2021 ◽  
Vol 13 (8) ◽  
pp. 4139
Author(s):  
Muriel Diaz ◽  
Mario Cools ◽  
Maureen Trebilcock ◽  
Beatriz Piderit-Moreno ◽  
Shady Attia

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO2 concentration as a proxy for IAQ. The monitoring of CO2, temperature, and humidity revealed that indoor air CO2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.


2019 ◽  
Vol 37 ◽  
Author(s):  
L.P. SILVEIRA ◽  
A.R. FEIJÓ ◽  
C. BENETTI ◽  
J.P. REFATTI ◽  
M.V. FIPKE ◽  
...  

ABSTRACT: The long temporal persistence of select herbicides negatively impacts crops sown in succession to irrigated rice. One way to reduce these compounds in the soil over time is through phytoremediation. However, elevated CO2 concentrations may interfere with the phytoremediation process. Another consequence of climate change is the production of allelopathic compounds by forage species used as remedial agents. This study aimed to evaluate the impact of elevated CO2 concentration and drought stress on the remediation of soil samples contaminated with imazapyr + imazapic herbicides by Italian ryegrass and any subsequential affect on the allelopathic effect of this species. We report that the increasing CO2 decreased the phytoremediation potential of ryegrass. Water stress combined with a CO2 concentration of 700 µmol mol-1 caused increased allelopathy. Overall, these are the first data to indicate a significant effect of higher CO2 levels with respect to both phytoremediation efficacy and allelopathic potential of the plant species used in phytoremediation.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
GOURI SHANKAR GIRI ◽  
S. V. S. RAJU ◽  
S. D. MOHAPATRA ◽  
MUNMUN MOHAPATRA

An experiment was conducted at Research Farm, National Rice Research Institute, Cuttack, Odisha, India to quantify the effect of elevated carbon dioxide (CO2) concentrations on the biology and morphometric parameters of yellow stem borer (Scirpophaga incertulas, Pyralidae, Lepidoptera). Yellow stem borer is one of the major pest of rice in the whole rice growing regions of South East Asia. The effect of three carbon dioxide concentrations i.e. 410 ppm (ambient), 550 ppm and 700 ppm on the duration of the developmental period as well as morphometric parameters of each stage of the lifecycle of the pest was analysed. It was found that, there was an increase in the duration of the developmental period of each stage of life cycle as the concentration of CO2 increases. However, the life span of the adult moth was significantly lower under the elevated CO2 concentrations when compared with ambient CO2 concentration. Morphometric parameters viz., mean length, width and weight of each larval instar, pupa and adult were found to be significantly higher in elevated concentrations of CO2 as compared to ambient concentration.


2018 ◽  
Vol 1 (1) ◽  
pp. 137-144
Author(s):  
Basaria Talarosha ◽  
Valencia Rosardy

Proses pernafasan menghasilkan udara yang mengandung 4,4% volume CO2 sehingga konsentrasi CO2 di dalam ruang kelas dapat menjadi lebih tinggi dari ruang luar jika ventilasi tidak mencukupi. Konsentrasi CO2 > 1000 ppm akan mengganggu kesehatan dan konsentrasi belajar yang berdampak pada penurunan performa belajar siswa. Penelitian sebelumnya menunjukkan adanya hubungan antara konsentrasi CO2 di dalam ruang kelas dengan ukuran, jumlah, posisi dan tipe jendela pada ruang kelas yang menggunakan sistem ventilasi alami. Tipe jendela gantung atas disebutkan memiliki performa yang paling buruk dalam menetralkan konsentrasi CO2 di dalam ruang. Studi bermaksud mengukur kadar konsentrasi CO2 di dalam sebuah ruang kelas pada salah satu sekolah dasar negeri di kota Medan yang menggunakan tipe jendela gantung atas. Pengukuran konsentrasi CO2 dilakukan pada kondisi sudut bukaan jendela sisi koridor ruang kelas 10 dan 30 masing -masing selama tiga (3) hari. Hasil studi menunjukkan konsentrasi CO2 maksimum pada kondisi sudut bukaan jendela 10 lebih rendah dari pada kondisi sudut bukaan jendela 30LI, namun konsentrasi CO2 rata-rata pada kedua posisi jendela masih di bawah ambang batas konsentrasi CO2 yang diijinkan untuk kesehatan (<1000 ppm).   The breathing process produces air containing 4.4% of the volume of CO2 so that the concentration of CO2 in the classroom can be higher than the outside space if there is insufficient ventilation. CO2 concentration> 1000 ppm will interfere with the health and concentration of learning which has an impact on decreasing student learning performance. Previous research has shown a correlation between CO2 concentrations in classrooms with the size, number, position and type of windows in classrooms that use natural ventilation systems. The upper hanging window type is said to have the worst performance in neutralizing CO2 concentrations in space. The study intends to measure the level of CO2 concentration in a classroom in one of the public elementary schools in the city of Medan that uses a type of upper hanging window. Measurements of CO2 concentrations were carried out at the corridor opening angle of the class 10 and 30 for three (3) days, respectively. The results showed that the maximum CO2 concentration at the window opening angle 10 was lower than the 30LI window opening, but the average CO2 concentration in both window positions was still below the threshold of the permissible CO2 concentration for health (<1000 ppm).


2013 ◽  
Vol 9 (3) ◽  
pp. 3489-3518 ◽  
Author(s):  
A. Goldner ◽  
N. Herold ◽  
M. Huber

Abstract. The mid-Miocene Climatic Optimum (MMCO) is an intriguing climatic period due to its above-modern temperatures in mid-to-high latitudes in the presence of close-to-modern CO2 concentrations. We use the recently released Community Earth System Model (CESM1.0) with a slab ocean to simulate this warm period, incorporating recent Miocene CO2 reconstructions of 400 ppm. We simulate a global mean annual temperature (MAT) of 18 °C, ~4 °C above the pre-industrial value, but 4 °C colder than the global Miocene MAT we calculate from climate proxies. Sensitivity tests reveal that the inclusion of a reduced Antarctic ice sheet, eastern equatorial Pacific Ocean temperature anomalies, increased CO2 to 560 ppm, and variations in obliquity only marginally improve model-data agreement. All MMCO simulations have an equator to pole temperature gradient which is at least ~ 10 °C larger than the reconstruction from proxies. The MMCO simulation most comparable to the proxy records requires a CO2 concentration of 800 ppm. Our results illustrate that MMCO warmth is not reproducible using the CESM1.0 forced with CO2 concentrations reconstructed for the Miocene or including various proposed Earth system feedbacks; the remaining discrepancy in the MAT is comparable to that introduced by a CO2 doubling. The models tendency to underestimate proxy derived global MAT and overestimate the equator to pole temperature gradient suggests a major climate problem in the MMCO akin to those in the Eocene. Our results imply that this latest model, as with previous generations of climate models, is either not sensitive enough or additional forcings remain missing that explain half of the anomalous warmth and pronounced polar amplification of the MMCO.


Development ◽  
1971 ◽  
Vol 25 (3) ◽  
pp. 277-299
Author(s):  
S. K. Moloo

The degree of determination of the young embryo of S. gregaria has been investigated using ligation, thermocautery and centrifugation techniques. From the overall results, it is suggested that the early development of the embryo is mediated by two physiological centres. The formation of the germ rudiment is controlled by an activation centre located in the periplasm round the posterior end of the egg. This centre is already present at the zygote nucleus stage and is essential during the very early cleavage period. The differentiation of the germ band is induced by the activity of a second centre, the differentiation centre, located in the presumptive thorax. It apparently becomes established at least by the late blastoderm stage and its activity continues during the period of germ-band formation. During the late cleavage and early blastoderm stages, the egg is labile and the embryo is therefore able to normalize its development after part or parts of the germinal Anlage have been cauterized, removed or displaced. The differentiation centre completes its functions by the beginning of gastrulation. Thereafter, the embryo is determined. The embryo can regulate its size at least up to the gastrulation stage provided that a certain minimum amount of usable yolk is available. The development of the serosa is not under the control of either centre. This structure seems to be capable of regeneration providing that a part of the extra-embryonic blastoderm remains intact.


2020 ◽  
Vol 17 (9) ◽  
pp. 2487-2498 ◽  
Author(s):  
Marcus B. Wallin ◽  
Joachim Audet ◽  
Mike Peacock ◽  
Erik Sahlée ◽  
Mattias Winterdahl

Abstract. Headwater streams are known to be hotspots for carbon dioxide (CO2) emissions to the atmosphere and are hence important components in landscape carbon balances. However, surprisingly little is known about stream CO2 dynamics and emissions in agricultural settings, a land use type that globally covers ca. 40 % of the continental area. Here we present hourly measured in situ stream CO2 concentration data from a 11.3 km2 temperate agricultural headwater catchment covering more than 1 year (in total 339 d excluding periods of ice and snow cover). The stream CO2 concentrations during the entire study period were generally high (median 3.44 mg C L−1, corresponding to partial pressures (pCO2) of 4778 µatm) but were also highly variable (IQR = 3.26 mg C L−1). The CO2 concentration dynamics covered a variety of different timescales from seasonal to hourly, with an interplay of hydrological and biological controls. The hydrological control was strong (although with both positive and negative influences dependent on season), and CO2 concentrations changed rapidly in response to rainfall and snowmelt events. However, during growing-season base flow and receding flow conditions, aquatic primary production seemed to control the stream CO2 dynamics, resulting in elevated diel patterns. During the dry summer period, rapid rewetting following precipitation events generated high CO2 pulses exceeding the overall median level of stream CO2 (up to 3 times higher) observed during the whole study period. This finding highlights the importance of stream intermittency and its effect on stream CO2 dynamics. Given the observed high levels of CO2 and its temporally variable nature, agricultural streams clearly need more attention in order to understand and incorporate these considerable dynamics in large-scale extrapolations.


Plants ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 62 ◽  
Author(s):  
James Bunce

Whether the mesophyll conductance to CO2 movement (gm) within leaves of C3 plants changes with CO2 concentration remains a matter of debate, particularly at low CO2 concentrations. We tested for changes in gm over the range of sub-stomatal CO2 concentrations (Ci) for which Rubisco activity limited photosynthesis (A) in three plant species grown under the same conditions. Mesophyll conductance was estimated by three independent methods: the oxygen sensitivity of photosynthesis, variable J fluorescence combined with gas exchange, and the curvature of the Rubisco-limited A vs. Ci curve. The latter assay used a new method of rapidly obtaining data points at approximately every 3 μmol mol−1 for Rubisco-limited A vs. Ci curves, allowing separate estimates of curvature over limited Ci ranges. In two species, soybean and sunflower, no change in gm with Ci was detected using any of the three methods of estimating gm. In common bean measured under the same conditions as the other species, all three methods indicated large decreases in gm with increasing Ci. Therefore, change in gm with Ci in the Rubsico-limited region of A vs. Ci curves depended on the species, but not on the method of estimating gm.


2016 ◽  
Vol 43 (9) ◽  
pp. 892 ◽  
Author(s):  
Simone Vassiliadis ◽  
Kim M. Plummer ◽  
Kevin S. Powell ◽  
Piotr Trębicki ◽  
Jo E. Luck ◽  
...  

Atmospheric CO2 concentrations are predicted to double by the end of this century. Although the effects of CO2 fertilisation in crop systems have been well studied, little is known about the specific interactions among plants, pests and pathogens under a changing climate. This growth chamber study focuses on the interactions among Barley yellow dwarf virus (BYDV), its aphid vector (Rhopalosiphum padi) and wheat (Triticum aestivum L. cv. Yitpi) under ambient (aCO2; 400µmolmol–1) or elevated (eCO2; 650µmolmol–1) CO2 concentrations. eCO2 increased the tiller number and biomass of uninoculated plants and advanced the yellowing symptoms of infected plants. Total foliar C content (percentage of the total DW) increased with eCO2 and with sham inoculation (exposed to early herbivory), whereas total N content decreased with eCO2. Liquid chromatography–mass spectrometry approaches were used to quantify the products of primary plant metabolism. eCO2 significantly increased sugars (fructose, mannitol and trehalose), irrespective of disease status, whereas virus infection significantly increased the amino acids essential to aphid diet (histidine, lysine, phenylalanine and tryptophan) irrespective of CO2 concentration. Citric acid was reduced by both eCO2 and virus infection. Both the potential positive and negative biochemical impacts on wheat, aphid and BYDV interactions are discussed.


Sign in / Sign up

Export Citation Format

Share Document