scholarly journals The challenge of simulating warmth of the mid-Miocene Climate Optimum in CESM1

2013 ◽  
Vol 9 (3) ◽  
pp. 3489-3518 ◽  
Author(s):  
A. Goldner ◽  
N. Herold ◽  
M. Huber

Abstract. The mid-Miocene Climatic Optimum (MMCO) is an intriguing climatic period due to its above-modern temperatures in mid-to-high latitudes in the presence of close-to-modern CO2 concentrations. We use the recently released Community Earth System Model (CESM1.0) with a slab ocean to simulate this warm period, incorporating recent Miocene CO2 reconstructions of 400 ppm. We simulate a global mean annual temperature (MAT) of 18 °C, ~4 °C above the pre-industrial value, but 4 °C colder than the global Miocene MAT we calculate from climate proxies. Sensitivity tests reveal that the inclusion of a reduced Antarctic ice sheet, eastern equatorial Pacific Ocean temperature anomalies, increased CO2 to 560 ppm, and variations in obliquity only marginally improve model-data agreement. All MMCO simulations have an equator to pole temperature gradient which is at least ~ 10 °C larger than the reconstruction from proxies. The MMCO simulation most comparable to the proxy records requires a CO2 concentration of 800 ppm. Our results illustrate that MMCO warmth is not reproducible using the CESM1.0 forced with CO2 concentrations reconstructed for the Miocene or including various proposed Earth system feedbacks; the remaining discrepancy in the MAT is comparable to that introduced by a CO2 doubling. The models tendency to underestimate proxy derived global MAT and overestimate the equator to pole temperature gradient suggests a major climate problem in the MMCO akin to those in the Eocene. Our results imply that this latest model, as with previous generations of climate models, is either not sensitive enough or additional forcings remain missing that explain half of the anomalous warmth and pronounced polar amplification of the MMCO.

2014 ◽  
Vol 10 (2) ◽  
pp. 523-536 ◽  
Author(s):  
A. Goldner ◽  
N. Herold ◽  
M. Huber

Abstract. The mid-Miocene climatic optimum (MMCO) is an intriguing climatic period due to its above-modern temperatures in mid-to-high latitudes in the presence of close-to-modern CO2 concentrations. We use the recently released Community Earth System Model (CESM1.0) with a slab ocean to simulate this warm period, incorporating recent Miocene CO2 reconstructions of 400 ppm (parts per million). We simulate a global mean annual temperature (MAT) of 18 °C, ~4 °C above the preindustrial value, but 4 °C colder than the global Miocene MAT we calculate from climate proxies. Sensitivity tests reveal that the inclusion of a reduced Antarctic ice sheet, an equatorial Pacific temperature gradient characteristic of a permanent El Niño, increased CO2 to 560 ppm, and variations in obliquity only marginally improve model–data agreement. All MMCO simulations have an Equator to pole temperature gradient that is at least ~10 °C larger than that reconstructed from proxies. The MMCO simulation most comparable to the proxy records requires a CO2 concentration of 800 ppm. Our results illustrate that MMCO warmth is not reproducible using the CESM1.0 forced with CO2 concentrations reconstructed for the Miocene or including various proposed Earth system feedbacks; the remaining discrepancy in the MAT is comparable to that introduced by a CO2 doubling. The model's tendency to underestimate proxy derived global MAT and overestimate the Equator to pole temperature gradient suggests a major climate problem in the MMCO akin to those in the Eocene. Our results imply that this latest model, as with previous generations of climate models, is either not sensitive enough or additional forcings remain missing that explain half of the anomalous warmth and pronounced polar amplification of the MMCO.


2013 ◽  
Vol 26 (13) ◽  
pp. 4398-4413 ◽  
Author(s):  
Chris Jones ◽  
Eddy Robertson ◽  
Vivek Arora ◽  
Pierre Friedlingstein ◽  
Elena Shevliakova ◽  
...  

Abstract The carbon cycle is a crucial Earth system component affecting climate and atmospheric composition. The response of natural carbon uptake to CO2 and climate change will determine anthropogenic emissions compatible with a target CO2 pathway. For phase 5 of the Coupled Model Intercomparison Project (CMIP5), four future representative concentration pathways (RCPs) have been generated by integrated assessment models (IAMs) and used as scenarios by state-of-the-art climate models, enabling quantification of compatible carbon emissions for the four scenarios by complex, process-based models. Here, the authors present results from 15 such Earth system GCMs for future changes in land and ocean carbon storage and the implications for anthropogenic emissions. The results are consistent with the underlying scenarios but show substantial model spread. Uncertainty in land carbon uptake due to differences among models is comparable with the spread across scenarios. Model estimates of historical fossil-fuel emissions agree well with reconstructions, and future projections for representative concentration pathway 2.6 (RCP2.6) and RCP4.5 are consistent with the IAMs. For high-end scenarios (RCP6.0 and RCP8.5), GCMs simulate smaller compatible emissions than the IAMs, indicating a larger climate–carbon cycle feedback in the GCMs in these scenarios. For the RCP2.6 mitigation scenario, an average reduction of 50% in emissions by 2050 from 1990 levels is required but with very large model spread (14%–96%). The models also disagree on both the requirement for sustained negative emissions to achieve the RCP2.6 CO2 concentration and the success of this scenario to restrict global warming below 2°C. All models agree that the future airborne fraction depends strongly on the emissions profile with higher airborne fraction for higher emissions scenarios.


2011 ◽  
Vol 4 (3) ◽  
pp. 2545-2576
Author(s):  
C. E. Brennan ◽  
A. J. Weaver ◽  
M. Eby ◽  
K. J. Meissner

Abstract. Implementing oxygen isotopes (H218O, H216O) in coupled climate models provides both an important test of the individual model's hydrological cycle, and a powerful tool to mechanistically explore past climate changes while producing results directly comparable to isotope proxy records. Here we describe the addition of oxygen isotopes in the University of Victoria Earth System Climate Model (UVic ESCM). Equilibrium simulations are performed for preindustrial and Last Glacial Maximum conditions. The oxygen isotope content in the model preindustrial climate is compared against observations for precipitation and seawater. The distribution of oxygen isotopes during the LGM is compared against available paleo-reconstructions.


2014 ◽  
Vol 10 (2) ◽  
pp. 451-466 ◽  
Author(s):  
E. Gasson ◽  
D. J. Lunt ◽  
R. DeConto ◽  
A. Goldner ◽  
M. Heinemann ◽  
...  

Abstract. A frequently cited atmospheric CO2 threshold for the onset of Antarctic glaciation of ~780 ppmv is based on the study of DeConto and Pollard (2003) using an ice sheet model and the GENESIS climate model. Proxy records suggest that atmospheric CO2 concentrations passed through this threshold across the Eocene–Oligocene transition ~34 Ma. However, atmospheric CO2 concentrations may have been close to this threshold earlier than this transition, which is used by some to suggest the possibility of Antarctic ice sheets during the Eocene. Here we investigate the climate model dependency of the threshold for Antarctic glaciation by performing offline ice sheet model simulations using the climate from 7 different climate models with Eocene boundary conditions (HadCM3L, CCSM3, CESM1.0, GENESIS, FAMOUS, ECHAM5 and GISS_ER). These climate simulations are sourced from a number of independent studies, and as such the boundary conditions, which are poorly constrained during the Eocene, are not identical between simulations. The results of this study suggest that the atmospheric CO2 threshold for Antarctic glaciation is highly dependent on the climate model used and the climate model configuration. A large discrepancy between the climate model and ice sheet model grids for some simulations leads to a strong sensitivity to the lapse rate parameter.


2013 ◽  
Vol 9 (5) ◽  
pp. 5701-5745 ◽  
Author(s):  
E. Gasson ◽  
D. J. Lunt ◽  
R. DeConto ◽  
A. Goldner ◽  
M. Heinemann ◽  
...  

Abstract. A frequently cited atmospheric CO2 threshold for the onset of Antarctic glaciation of ~ 780 ppmv is based on a study using an ice sheet model and the GENESIS climate model. Proxy records suggest that atmospheric CO2 concentrations passed through this threshold across the Eocene–Oligocene transition ~ 34 Ma. However, atmospheric CO2 concentrations may have been close to this threshold earlier than this transition, which is used by some to suggest the possibility of Antarctic ice sheets during the Eocene. Here we investigate the climate model dependency of the threshold for Antarctic glaciation by performing offline ice sheet model simulations using the climate from a number of different climate models (HadCM3L, CCSM3, CESM1.0, GENESIS, FAMOUS, ECHAM5 and GISS_ER). These climate simulations are sourced from a number of independent studies, as such the boundary conditions, which are poorly constrained during the Eocene, are not identical between simulations. The results of this study suggest that the atmospheric CO2 threshold for Antarctic glaciation is highly dependent on the climate model used and the climate model configuration. A large discrepancy between the climate model and ice sheet model grids for some simulations leads to a strong sensitivity to the lapse rate parameter. However, with the exception of HadCM3L and its reduced complexity version FAMOUS, the simulations suggest the growth of an intermediate sized ice sheet (> 25 m sea level equivalent) for atmospheric CO2 concentrations in the range of 560–920 ppmv, which is consistent with previous studies.


2021 ◽  
Vol 13 (8) ◽  
pp. 4139
Author(s):  
Muriel Diaz ◽  
Mario Cools ◽  
Maureen Trebilcock ◽  
Beatriz Piderit-Moreno ◽  
Shady Attia

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO2 concentration as a proxy for IAQ. The monitoring of CO2, temperature, and humidity revealed that indoor air CO2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.


2021 ◽  
Vol 13 (5) ◽  
pp. 878
Author(s):  
Christopher Cullingworth ◽  
Jan-Peter Muller

Despite the wealth of data produced by previous and current Earth Observation platforms feeding climate models, weather forecasts, disaster monitoring services and countless other applications, the public still lacks the ability to access a live, true colour, global view of our planet, and nudge them towards a realisation of its fragility. The ideas behind commercialization of Earth photography from space has long been dominated by the analytical value of the imagery. What specific knowledge and actionable intelligence can be garnered from these evermore frequent revisits of the planet’s surface? How can I find a market for this analysis? However, what is rarely considered is what is the educational value of the imagery? As students and children become more aware of our several decades of advance in viewing our current planetary state, we should find mechanisms which serve their curiosity, helping to satisfy our children’s simple quest to explore and learn more about what they are seeing. The following study describes the reasons why current GEO and LEO observation platforms are inadequate to provide truly global RGB coverage on an update time-scale of 5-min and proposes an alternative, low-cost, GEO + Molniya 3U CubeSat constellation to perform such an application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Forryan ◽  
Alberto C. Naveira Garabato ◽  
Clément Vic ◽  
A. J. George Nurser ◽  
Alexander R. Hearn

AbstractThe Galápagos archipelago, rising from the eastern equatorial Pacific Ocean some 900 km off the South American mainland, hosts an iconic and globally significant biological hotspot. The islands are renowned for their unique wealth of endemic species, which inspired Charles Darwin’s theory of evolution and today underpins one of the largest UNESCO World Heritage Sites and Marine Reserves on Earth. The regional ecosystem is sustained by strongly seasonal oceanic upwelling events—upward surges of cool, nutrient-rich deep waters that fuel the growth of the phytoplankton upon which the entire ecosystem thrives. Yet despite its critical life-supporting role, the upwelling’s controlling factors remain undetermined. Here, we use a realistic model of the regional ocean circulation to show that the intensity of upwelling is governed by local northward winds, which generate vigorous submesoscale circulations at upper-ocean fronts to the west of the islands. These submesoscale flows drive upwelling of interior waters into the surface mixed layer. Our findings thus demonstrate that Galápagos upwelling is controlled by highly localized atmosphere–ocean interactions, and call for a focus on these processes in assessing and mitigating the regional ecosystem’s vulnerability to 21st-century climate change.


2019 ◽  
Vol 16 (19) ◽  
pp. 3883-3910 ◽  
Author(s):  
Lina Teckentrup ◽  
Sandy P. Harrison ◽  
Stijn Hantson ◽  
Angelika Heil ◽  
Joe R. Melton ◽  
...  

Abstract. Understanding how fire regimes change over time is of major importance for understanding their future impact on the Earth system, including society. Large differences in simulated burned area between fire models show that there is substantial uncertainty associated with modelling global change impacts on fire regimes. We draw here on sensitivity simulations made by seven global dynamic vegetation models participating in the Fire Model Intercomparison Project (FireMIP) to understand how differences in models translate into differences in fire regime projections. The sensitivity experiments isolate the impact of the individual drivers on simulated burned area, which are prescribed in the simulations. Specifically these drivers are atmospheric CO2 concentration, population density, land-use change, lightning and climate. The seven models capture spatial patterns in burned area. However, they show considerable differences in the burned area trends since 1921. We analyse the trajectories of differences between the sensitivity and reference simulation to improve our understanding of what drives the global trends in burned area. Where it is possible, we link the inter-model differences to model assumptions. Overall, these analyses reveal that the largest uncertainties in simulating global historical burned area are related to the representation of anthropogenic ignitions and suppression and effects of land use on vegetation and fire. In line with previous studies this highlights the need to improve our understanding and model representation of the relationship between human activities and fire to improve our abilities to model fire within Earth system model applications. Only two models show a strong response to atmospheric CO2 concentration. The effects of changes in atmospheric CO2 concentration on fire are complex and quantitative information of how fuel loads and how flammability changes due to this factor is missing. The response to lightning on global scale is low. The response of burned area to climate is spatially heterogeneous and has a strong inter-annual variation. Climate is therefore likely more important than the other factors for short-term variations and extremes in burned area. This study provides a basis to understand the uncertainties in global fire modelling. Both improvements in process understanding and observational constraints reduce uncertainties in modelling burned area trends.


2012 ◽  
Vol 5 (3) ◽  
pp. 2811-2842 ◽  
Author(s):  
M. A. Chandler ◽  
L. E. Sohl ◽  
J. A. Jonas ◽  
H. J. Dowsett

Abstract. Climate reconstructions of the mid-Pliocene Warm Period (mPWP) bear many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change. In particular, marine and terrestrial paleoclimate data point to high latitude temperature amplification, with associated decreases in sea ice and land ice and altered vegetation distributions that show expansion of warmer climate biomes into higher latitudes. NASA GISS climate models have been used to study the Pliocene climate since the USGS PRISM project first identified that the mid-Pliocene North Atlantic sea surface temperatures were anomalously warm. Here we present the most recent simulations of the Pliocene using the AR5/CMIP5 version of the GISS Earth System Model known as ModelE2-R. These simulations constitute the NASA contribution to the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasize features in the ModelE2-R simulations that are unlike the ensemble means. We provide discussion of features that show considerable improvement compared with simulations from previous versions of the NASA GISS models, improvement defined here as simulation results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene climate. In some regions even qualitative agreement between model results and paleodata are an improvement over past studies, but the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea in these new simulations is by far the most accurate portrayal ever of this key geographic region by the GISS climate model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterizations in the ocean model, have led to an Earth System Model that will produce more accurate projections of future climate.


Sign in / Sign up

Export Citation Format

Share Document