154 Exosomes in Follicular Fluid Protect the Bovine Oocyte from Heat Shock

2018 ◽  
Vol 30 (1) ◽  
pp. 217 ◽  
Author(s):  
T. A. Rodrigues ◽  
A. Alli ◽  
F. F. Paula-Lopes ◽  
P. Hansen

Elevated temperature can compromise the ability of the mammalian oocyte to develop to the blastocyst stage after fertilization. The microenvironment of the oocyte is determined by the cellular and non-cellular components of the follicle including cumulus cells and follicular fluid. Here we tested whether follicular fluid contains molecules that can protect the bovine oocyte from heat shock during maturation, and if so, whether some of these protective molecules are present in exosomes. The experiments utilised ovaries from Bos taurus and admixtures of B. taurus and Bos indicus. Four separate pools of follicular fluid were prepared by aspiration of follicles from 48 to 70 slaughterhouse ovaries. Exosomes were isolated from follicular fluid by a series of centrifugation, filtration, and ultracentrifugation steps before being reconstituted in PBS. Each of the 4 exosome preparations was subject to particle size and concentration analysis. The experiments were designed as 2 × 3 factorial to test the effect of temperature and supplementation. Cumulus-oocyte complexes (COC) obtained from slaughterhouse ovaries were matured at 38.5°C for 22 h (control) or 41°C for 14 h followed by 38.5°C for 8 h (heat shock). Maturation was performed in the presence of vehicle (PBS), 10% (v/v) follicular fluid, or exosomes (16 × 109 particles/mL). Data were analysed by least-squares ANOVA. Orthogonal contrasts and the mean separation test pdiff were used to compare means. Effects of treatment on cumulus cell expansion (change in diameter after maturation) were replicated 5 times using 119 to 122 COC per treatment. Effects of treatment on embryonic development after fertilization of treated COC was determined in 6 replicates using 244 to 286 embryos per replicate. Expansion was reduced by heat shock (P < 0.001), and affected by treatment (P < 0.05), with both follicular fluid and exosomes preventing the decrease in expansion caused by heat shock. Cleavage was reduced by heat shock (P < 0.001) and affected by treatment (P < 0.05) and the interaction between temperature × supplementation (P < 0.05). Although heat shock reduced the cleavage rate for vehicle-treated oocytes (77 v. 67%), there was no effect of heat shock for oocytes treated with follicular fluid FF (78 v. 74%) or exosomes (79 v. 78%; SEM = 1.4%). Heat shock also reduced the percent of cleaved embryos becoming blastocysts for the vehicle group (27 v. 17%; P < 0.05) but had no effect on percent of cleaved embryos becoming blastocysts for the follicular fluid (31% v. 26%) or exosome groups (28 v. 26%). Uptake of exosomes into isolated cumulus cells and oocytes cultured at 38.5°C for 0.5, 1, 14 and 22 h was examined using labelling of exosomes with 10 µM BODIPY® Ceramide TR (Thermo Fisher Scieintific, Waltham, MA, USA) and confocal microscopy. Exosomes were taken up by cumulus cells after culture for 1 h or later but were not taken up by oocytes. In conclusion, follicular fluid exosomes protected the oocytes from heat shock and this effect seems to be mediated by cumulus cells. Study supported by BARD US-4719-14.

2018 ◽  
Vol 30 (1) ◽  
pp. 198
Author(s):  
G. Santos ◽  
M. P. Bottino ◽  
M. B. D. Ferreira ◽  
J. C. Silveira ◽  
A. C. F. C. M. Avila ◽  
...  

The aim was to evaluate the effect of subclinical mastitis by somatic cell count (SCC) on follicular dynamics, ovulation, oocyte and cumulus cell quality, exosome size and concentration in milk-producing cows. Crossbred cows (Bos taurus × Bos indicus; that is, Holstein × Gyr) were randomly allocated to control (SCC <200,000 cells mL−1] and mastitis (SCC >400,000 cells mL−1) groups. In experiment 1 (follicular dynamics), cows (n = 57) were submitted to ultrasonographic evaluations every 24 h, after removal of an intravaginal progesterone device (Day 8) up to Day 10. From Day 10, ultrasound evaluations were performed every 12 h, until ovulation or until 96 h after progesterone device withdrawal, in order to follow final dominant follicle growth and ovulation. In experiment 2 (oocyte, cumulus cells, and follicular fluid evaluation), cows (n = 23) were submitted to follicular aspirations, preceded by synchronization of the emergence of the follicular wave. The levels of target genes in cumulus cells (BCL2, BAX, PI3K, PTEN, FOXO3) were evaluated by RT-qPCR. In the follicular fluid, the exosomes were isolated for evaluation of particle size. Data were analysed by the Glimmix procedure of SAS (SAS Institute Inc., Cary, NC, USA). Ovulation rate (P = 0.09) was higher in control cows [control 77.42% (24/31) and mastitis 57.69% (15/26)]. Viable oocyte rate (P = 0.01) was also higher in control cows [control 59.1% (130/220) and mastitis 41.9% (125/298)]. The dynamics of follicular growth did not differ between groups. The number of degenerate oocytes (P = 0.001) was higher in cows of the mastitis group. In the evaluation of cumulus cell gene expression, there was a higher abundance of BAX transcripts (P = 0.003) in cells of mastitis cows. Additionally, the mean and mode of exosome diameter in mastitis cows were smaller (P = 0.03 and P = 0.02, respectively). In conclusion, ovulation rate, oocyte quality, and follicular fluid exosome diameter were lower in cows with subclinical mastitis, demonstrating a link between mammary gland sanitary status and reproduction.


2010 ◽  
Vol 22 (1) ◽  
pp. 293 ◽  
Author(s):  
L. U. Gimenes ◽  
M. L. Ferraz ◽  
A. Araujo ◽  
P. Fantinato Neto ◽  
M. R. Chiarati ◽  
...  

One important factor in the success of ovum pickup (OPU)/IVP in Bos taurus is the follicular status at OPU concerning the dominance period (Hendriksen et al. 2000 Theriogenology 53, 11-20). The hypothesis of the present study is that OPU performed after follicle deviation, when follicles show a mild level of atresia, improves competence for IVP in Nelore (NE), Holstein (HO), and buffaloes (BU). Objectives were to determine effects of OPU done at different times of synchronized follicular wave (1, 3, or 5 d after expected emergence) and of genetic group (NE, HO, and BU) on IVP. A total of 27 heifers (9 of each genetic group) were maintained in contemporary nutritional and environmental conditions during experiment, in a cross-over design, performed in 6 replicates. Recovered oocytes with at least one cumulus cell layer were matured in TCM-199 supplemented with 10% of FCS plus 50 μM of cysteamin and 0.3 mM of cystine, at 38.5°C with 5% CO2 in air for 24 h. IVF was done with 2 × 106 spermatozoa per mL of NE (for bovine oocytes) or BU semen (for BU oocytes), for 20 h at the same incubator conditions of IVM. After IVF, presumptive zygotes were denuded and cultured in SOF under the same previous atmosphere conditions. Medium was changed 3 d after IVF when cleavage rate (CR) was assessed. Blastocyst (BR) and hatching rates (HR) were evaluated 7 and 9 days after IVF, respectively. About 50% of hatched blastocysts were fixed until nuclei counting. Data were analyzed by ANOVA using the Proc Mixed model. No effects of interaction or time of synchronization were observed in any of the variables. Concerning genetic group, NE had better results than HO and BU (mean ± SEM / heifer / replicate), respectively, for visualized follicles (41.0a ± 2.1, 22.1b ± 1.3, 18.8b ± 0.9), total oocytes (37.1a ± 2.5, 15.4b ± 1.2, 14.8b ± 1.0), oocytes at IVM (30.8a ± 2.4, 10.7b ± 1.0, 7.9b ± 0.7), oocytes at IVC (18.7a ± 0.8, 8.0b ± 0.5, 7.5b ± 0.4), cleaved embryos (15.4a ± 0.7, 4.6b ± 0.4, 4.4b ± 0.3),CR(81.8a, 59.1b, 62.3b), blastocysts on Day 7 (5.1a ± 0.6, 1.0b ± 0.2, 0.6b ± 0.1), BR (25.8a, 13.6b, 9.1b), and hatched blastocysts on Day 9 (2.6a ± 0.4, 0.3b ± 0.1, 0.3b ± 0.1). Recovery rate and HR were greater for NE (89.4 and 50.6%, respectively) than for HO (73.3 and 23.2%), but neither differed from BU (82.8 and 31.9%). Also, the percentage of viable was greater for NE (83.0) than for HO (66.9) and BU (53.1). No effects were observed for nuclei counting (NE = 176.6 ± 5.3, HO = 168.9 ± 13.7 and BU = 206.1 ± 23.1). Results demonstrate that Nelore had a better efficiency for IVP than Holstein and buffaloes. OPU performed at different times of synchronized follicular wave did not influence IVP, conversely to the initial hypothesis of this study. FAPESP (06/59550-6, 07/04782-2), Tortuga Cia Zootecnica®, Santa Adele and São Caetano Farms, LMMD, PCAPS, HOVET (Dr. Ubiraem Schalch), VRA, VNP (Prof. Dr. Francisco de Palma Rennó).


2013 ◽  
Vol 25 (1) ◽  
pp. 267
Author(s):  
J. Pelaez ◽  
H. Hernandez-Fonseca ◽  
A. Pirela ◽  
F. Baez ◽  
P. Villamediana ◽  
...  

The purpose of this research was to compare the competence of bovine oocytes of different breed predominance (Bos taurus v. Bos indicus) to mature and to be fertilized. This was done through the collection, selection, maturation, and fertilization of oocytes from slaughtered cows, predominantly either B. taurus or B. indicus. Only cows that were at least 5/8 B. taurus or 5/8 B. indicus, according to a series of phenotypic characteristics, such as the presence of a hump, dewlap, length of the ears, and others, were selected. To obtain cumulus–oocyte complexes, ovarian follicles (3 to 10 mm in diameter) were aspirated, and only oocytes with 2 or more layers of cumulus cells, an intact zona pellucida, and a homogeneous granular cytoplasm were selected. After selection, oocyte maturation [in vitro maturation (IVM)] and IVF were done. Frozen–thawed semen was used from one Brahman bull (B. indicus). For the evaluation of IVM as for IVF, oocytes were fixed for approximately 24 h at 4°C in a solution of ethanol : acetic acid (3 : 1). They were then stained with 1% acetic orcein. A chi-squared test was performed for all reported rates. The rate of maturation of oocytes from cows with a predominant B. indicus phenotype was 66.93%, whereas cows with a B. taurus phenotype reached 43.10% (P < 0.001). Regarding the fertilization rate, predominantly B. indicus females had 43.68% of oocytes normally fertilized and 41.74% of oocytes were abnormally penetrated. This category included polyspermic and asynchronic (abnormally developed pronucleus) oocytes. In cows with B. taurus predominance, 31.96% of oocytes were normally penetrated and 46.39% were abnormally penetrated by spermatozoa (no significant differences were found). The rate of non-fertilized oocytes was significantly different (P < 0.05) among B. indicus and B. taurus oocytes (6.79 and 17.52%, respectively). A small and nonsignificant proportion of degenerated oocytes resulted in both groups (7.79% for B. indicus and 4.14% for B. taurus). The cleavage rate was not different among phenotypic groups (36.12 and 32.30%, respectively, for B. indicus and B. taurus). In conclusion, the present results indicate that oocytes from predominantly B. indicus cows were more competent than oocytes from cows with a predominance of the B. taurus breed. Nonetheless, this superiority was not evident in terms of cleavage rates. Semen from other B. indicus and B. taurus breeds must be tested to clarify any breed interactions.


2014 ◽  
Vol 26 (2) ◽  
pp. 337 ◽  
Author(s):  
Satoko Matoba ◽  
Katrin Bender ◽  
Alan G. Fahey ◽  
Solomon Mamo ◽  
Lorraine Brennan ◽  
...  

The follicle is a unique micro-environment within which the oocyte can develop and mature to a fertilisable gamete. The aim of this study was to investigate the ability of a panel of follicular parameters, including intrafollicular steroid and metabolomic profiles and theca, granulosa and cumulus cell candidate gene mRNA abundance, to predict the potential of bovine oocytes to develop to the blastocyst stage in vitro. Individual follicles were dissected from abattoir ovaries, carefully ruptured under a stereomicroscope and the oocyte was recovered and individually processed through in vitro maturation, fertilisation and culture. The mean (± s.e.m.) follicular concentrations of testosterone (62.8 ± 4.8 ng mL–1), progesterone (616.8 ± 31.9 ng mL–1) and oestradiol (14.4 ± 2.4 ng mL–1) were not different (P > 0.05) between oocytes that formed (competent) or failed to form (incompetent) blastocysts. Principal-component analysis of the quantified aqueous metabolites in follicular fluid showed differences between oocytes that formed blastocysts and oocytes that degenerated; l-alanine, glycine and l-glutamate were positively correlated and urea was negatively correlated with blastocyst formation. Follicular fluid associated with competent oocytes was significantly lower in palmitic acid (P = 0.023) and total fatty acids (P = 0.031) and significantly higher in linolenic acid (P = 0.036) than follicular fluid from incompetent oocytes. Significantly higher (P < 0.05) transcript abundance of LHCGR in granulosa cells, ESR1 and VCAN in thecal cells and TNFAIP6 in cumulus cells was associated with competent compared with incompetent oocytes.


2014 ◽  
Vol 26 (1) ◽  
pp. 198
Author(s):  
E. Daly ◽  
A. G. Fahey ◽  
M. M. Herlihy ◽  
T. Fair

We have previously demonstrated the importance of progesterone (P4) synthesis by cumulus cells during oocyte maturation in vitro (IVM) for bovine oocyte acquisition of developmental competence and subsequent embryo development (Aparicio et al. 2011 Biol. Reprod. 84). The aim of this study was to identify key processes that may be deregulated by the inhibition of P4 signalling in the cumulus–oocyte complex (COC) during IVM. To this end, good quality immature COC were placed in IVM medium [TCM-199 supplemented with 10% (vol/vol) FCS and 10 ng mL–1 epidermal growth factor] and cultured at 39°C for 22 h in a humidified atmosphere containing 5% CO2, in the presence or absence of 10 μM trilostane (which blocks P4 synthesis by inhibiting 3 β-hydroxysteroid dehydrogenase; Stegram Pharmaceuticals Ltd., Surrey, UK). Matured COC were washed and placed in 250 μL of fertilization medium (25 mM bicarbonate, 22 mM Na-lactate, 1 mM Na-pyruvate, 6 mg mL–1 fatty acid-free BSA, and 10 mg mL–1 heparin). In vitro fertilization (IVF) was performed with 250 μL of frozen–thawed semen at a final concentration of 1 × 106 spermatozoa mL–1 at 39°C under 5% CO2 during 20 h. Presumptive zygotes were denuded, washed, and transferred to 25-μL culture droplets (SOF + 5% FCS) at 39°C under 5% CO2, 90% of N2, and 5% O2 atmosphere with maximum humidity. Subsets of presumptive fertilized eggs and developing embryos were recovered at 6, 72, 120, and 192 h postinsemination (hpi) and processed for confocal whole-mount immunocytochemistry. The meiotic and mitotic spindles and chromosomes were visualised by immunofluorescent labelling of α-tubulin and 4′,6-diamindino-2-phenylindole (DAPI), respectively, and classified as normal if the chromosomes were correctly aligned or appropriately segregated, or abnormal if lagging chromosomes or abnormal chromosome segregation were observed. Samples were collected from 5 replicates (n = 50 zygotes/embryos per treatment, per timepoint) and a total of 157 spindles were observed. Logistic regression analysis was conducted to determine the probability of abnormal spindle formation. The incidence of spindle abnormality was regressed on time, treatment, and treatment by time. For all time points, there was significant reduction in the odds of abnormal spindle formation in control samples versus trilostane-treated samples (P < 0.001). In conclusion, our data imply a role for P4 signalling in maintaining spindle integrity during oocyte meiotic maturation and progression through the initial mitotic divisions of early embryo development in cattle.


2014 ◽  
Vol 26 (1) ◽  
pp. 197
Author(s):  
E. D. Souza ◽  
F. B. E. Paula ◽  
C. C. R. Quintao ◽  
J. H. M. Viana ◽  
L. T. Iguma ◽  
...  

The 90-kDa heat shock protein (HSP90) is a chaperone that is important for maintaing protein homeostasis under stress conditions. HSP90 seems also to be required for maturation of Xenopus oocytes (Fisher et al. 2000 EMBO J. 19, 1516) and first cleavage of mouse zygotes (Audouard et al. 2011 PloS One 6, e17109). This study aimed to evaluate the effect of inhibition of HSP90 by 17-(allylamino)-17-demethoxygeldanamycin (17AAG, Sigma St. Louis, MO, USA) during in vitro maturation (IVM) on bovine oocyte developmental competence. Immature cumulus–oocyte complexes (COC) were randomly allocated in 3 treatments during IVM: T0 (control; n = 240), no HSP90 inhibitor; T1: 2 μM HSP90 inhibitor (17AAG; n = 250) for the first 12 h of IVM; and T2: 2 μM HSP90 inhibitor (n = 188) for 24 h of IVM. In vitro maturation was performed in Nunc plates containing 400 μL of TCM-199 medium (Invitrogen, Carlsbad, CA, USA) supplemented with porcine FSH (Hertape Calier, Juatuba, Brazil) and 10% oestrus cow serum under 5% CO2, 95% humidity, and 38.5°C for 24 h. Oocytes were in vitro fertilized for 20 h and incubated under the same IVM conditions. Semen was processed by Percoll gradient (Nutricell, Campinas, Brazil) an IVF performed with 2 × 106 spermatozoa mL–1. Presumptive zygotes were completely denuded in a PBS solution with hyaluronidase and then cultured in wells with 500 μL of modified CR2aa medium supplemented with 2.5% fetal calf serum (Nutricell) in an incubator at 38.5°C under 5% CO2, 5% O2, 90% N2, and saturated humidity. Cleavage rate was evaluated 72 h post-fertilization and blastocyst rates were evaluated at Day 7 and Day 8. Data from 6 repetitions were analysed by generalized linear model procedure of SAS software (version 9.1; SAS Institute Inc., Cary, NC, USA), and means were compared by Student-Newman-Keuls test. Values are shown as mean ± s.e.m. There was a tendency (P = 0.08) for a lower cleavage rate in T2 (52.6 ± 5.8%) than in T0 (control; 74.2 ± 4.1%). Inhibition of HSP90 by 17AAG for 12 h and 24 h of IVM (T1 and T2, respectively) decreased blastocyst rates at Day 7 (20.4 ± 3.0% and 14.3 ± 2.6%, respectively; P < 0.01) and Day 8 (22.6 ± 4.1% and 16.9 ± 2.7%, respectively; P < 0.05) when compared with control (T0 = 31.8 ± 2.5% and 34.1 ± 2.9% for Day 7 and Day 8, respectively). In addition, the inhibition of HSP90 for 24 h decreased (P < 0.05) the proportion of hatched blastocysts at Day 8 (9.5 ± 5.0% for T2, respectively) when compared with control (T0 = 35.8 ± 3.9%), indicating a reduction on embryo quality. In conclusion, inhibition of HSP90 by 17AAG during IVM results in lower developmental competence, suggesting that this protein is also important for bovine oocytes. Further studies are required to investigate if the role of HSP90 on developmental competence of bovine oocyte is affected when under stress conditions. The authors acknowledge CNPq 473484/2011-0, FAPEMIG and FAPES for financial support.


2010 ◽  
Vol 22 (1) ◽  
pp. 248 ◽  
Author(s):  
J. H. F. Pontes ◽  
K. C. F. Silva ◽  
A. C. Basso ◽  
C. R. Ferreira ◽  
G. M. G. Santos ◽  
...  

In recent years, Brazil has become the leading country in the world for the number of embryos produced in vitro (Thibier M 2009 IETS Embryo Transfer Newsletter 22, 12-19). This is partly due to the large numbers of Bos indicus animals in Brazil, making up about 80% of the total cattle. The mean oocyte production per ultrasound-guided follicular aspiration from Bos indicus is higher than those for European breeds (Pontes JHF et al. 2009 Theriogenology 71, 690-697). In the present study, we analyzed 5407 ovum pick ups (OPU) and compared the average production of total (n = 90,086) and viable (n = 64,826) oocytes and the number of embryos produced in vitro from Gir (Bos taurus indicus), Holstein (Bos taurus taurus), 1/4 Holstein × 3/4 Gir, and 1/2 Holstein-Gir crossbreed cows. To obtain oocytes, OPU was repeated from 4 to 7 times (mean = 5.7 ± 2.4) in each donor cow aged from 3 to 7 years (mean = 5.0 ± 2.3) during a 12-mo period. COCs (n = 90,086) obtained were classified according to the presence of cumulus cells and the oocyte cytoplasm aspect (homogeneous or heterogeneous/fragmented). The viable oocytes (n = 64,826) were in vitro matured for 24 h at 38.8°C in an atmosphere of 5% CO2 in air. Since this was a commercial programm, frozen sexed semen (2 × 106 mL-1) from Gir (n = 8) or Holstein (n = 7) sires previously tested for high efficiency was used for IVF. Fertilization was carried out (18-20 h) and the presumed embryos were cultured for 7 days in the same conditions as were used for IVM. Data were analyzed by ANOVA. On average, 16.7 ± 6.2 oocytes were obtained per OPU/IVF procedure and 71.96% were considered viable. The mean numbers of total oocytes per OPU/IVF procedure were 17.1 ± 4.4 for Gir cows (n = 617), 11.4 ± 3.9 for Holstein cows (n = 180), 20.4 ± 5.8 for 1/4 Holstein × 3/4 Gir (n = 44), and 31.4 ± 5.6 for 1/2 Holstein-Gir crossbreed females (n = 37, P < 0.01). The mean numbers of viable oocytes per OPU/IVF procedure were 12.1 ± 3.8 for Gir cows, 8.0 ± 2.6 for Holstein cows, 16.8, ± 5.0 for 1/4 Holstein × 3/4 Gir, and 24.3 ± 4.7 for 1/2 Holstein-Gir crossbreed females (P < 0.01). The average number of embryos produced by OPU/IVF were 3.2 (n = 12,243/3378) for Gir cows, 2.2 (n = 2426/1138) for Holstein cows, 3.9 (n = 1033/267) for 1/4 Holstein × 3/4 Gir, and 5.5 (n = 1222/224) for 1/2 Holstein-Gir. The average number of embryos produced per IVF session from 1/2 taurus × indicus donor cows was greater (P < 0.01) than from Bos indicus cows. The number of recoverable and viable oocytes and the number of embryos produced in vitro from Bos indicus donors were higher than from Bos taurus females. Therefore, the highest oocyte yield and the greatest embryo production were obtained from 1/2 taurus × indicus females. This work was supported by In Vitro Brasil.


Zygote ◽  
2005 ◽  
Vol 13 (2) ◽  
pp. 177-185 ◽  
Author(s):  
A. Nader Fatehi ◽  
Bernard A.J. Roelen ◽  
Ben Colenbrander ◽  
Eric J. Schoevers ◽  
Bart M. Gadella ◽  
...  

The present study was conducted to evaluate the function of cumulus cells during bovine IVF. Oocytes within cumulus–oocyte complexes (COCs) or denuded oocytes (DOs) were inseminated in control medium, or DOs were inseminated in cumulus cell conditioned medium (CCCM). DOs exhibited reduced cleavage and blastocyst formation rates when compared with intact COCs. The reduced blastocyst formation rate of DOs resulted from reduced first cleavage but subsequent embryo development was not changed. Live-dead staining and staining for apoptotic cells revealed no differences in blastocysts from oocytes fertilized as COC or DO. Fertilization of DOs in CCCM partially restored the cleavage rate, suggesting that factors secreted by cumulus cells are important for fertilization but that physical contact between oocytes and cumulus cells is required for optimal fertilization and first cleavage. Exposure of COCs to hydrogen peroxide shortly before fertilization reduced the cleavage rate, but did not lead to enhanced death of cumulus cells or oocyte death. Exposure of DOs to hydrogen peroxide, however, resulted in oocyte death and a complete block of first cleavage, suggesting that cumulus cells protect the oocyte against oxidative stress during fertilization.


Reproduction ◽  
2008 ◽  
Vol 136 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Ikkou Kawashima ◽  
Tetsuji Okazaki ◽  
Noritaka Noma ◽  
Masahide Nishibori ◽  
Yasuhisa Yamashita ◽  
...  

In this study, we collected follicular fluid, granulosa cells, and cumulus cells from antral follicles at specific time intervals following equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG) treatment of gilts. The treatment with eCG increased the production of estrogen coordinately with up-regulated proliferation of granulosa and cumulus cells. eCG also induced the expression ofLHCGRandPGRin cumulus cells and progesterone accumulation was detected in follicular fluid prior to the LH/hCG surge. Moreover, progesterone and progesterone receptor (PGR) were critical for FSH-inducedLHCGRexpression in cumulus cells in culture. The expression ofLHCGRmRNA in cumulus cells was associated with the ability of LH to induce prostaglandin production, release of epidermal growth factor (EGF)-like factors, and a disintegrin and metalloprotease with thrombospondin-like repeats 1 expression, promoting cumulus cell oocyte complexes (COCs) expansion and oocyte maturation. Based on the unique expression and regulation ofPGRandLHCGRin cumulus cells, we designed a novel porcine COCs culture system in which hormones were added sequentially to mimic changes observedin vivo. Specifically, COCs from small antral follicles were pre-cultured with FSH and estradiol for 10 h at which time progesterone was added for another 10 h. After 20 h, COCs were moved to fresh medium containing LH, EGF, and progesterone. The oocytes matured in this revised COC culture system exhibited greater developmental competence to blastocyst stage. From these results, we conclude that to achieve optimal COC expansion and oocyte maturation in culture the unique gene expression patterns in cumulus cells of each species need to be characterized and used to increase the effectiveness of hormone stimulation.


2013 ◽  
Vol 25 (1) ◽  
pp. 17 ◽  
Author(s):  
Ciro M. Barros ◽  
Rafael A. Satrapa ◽  
Anthony C. S. Castilho ◽  
Patrícia K. Fontes ◽  
Eduardo M. Razza ◽  
...  

Multiple ovulation (superovulation) and embryo transfer has been used extensively in cattle. In the past decade, superstimulatory treatment protocols that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-time AI (FTAI), have been developed for zebu (Bos indicus) and European (Bos taurus) breeds of cattle. There is evidence that additional stimulus with LH (through the administration of exogenous LH or equine chorionic gonadotrophin (eCG)) on the last day of the superstimulatory treatment protocol, called the ‘P-36 protocol’ for FTAI, can increase embryo yield compared with conventional protocols that are based on the detection of oestrus. However, inconsistent results with the use of hormones that stimulate LH receptors (LHR) have prompted further studies on the roles of LH and its receptors in ovulatory capacity (acquisition of LHR in granulosa cells), oocyte competence and embryo quality in superstimulated cattle. Recent experiments have shown that superstimulation with FSH increases mRNA expression of LHR and angiotensin AT2 receptors in granulosa cells of follicles >8 mm in diameter. In addition, FSH decreases mRNA expression of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in oocytes, but increases the expression of both in cumulus cells, without diminishing the capacity of cumulus–oocyte complexes to generate blastocysts. Although these results indicate that superstimulation with FSH is not detrimental to oocyte competence, supplementary studies are warranted to investigate the effects of superstimulation on embryo quality and viability. In addition, experiments comparing the cellular and/or molecular effects of adding eCG to the P-36 treatment protocol are being conducted to elucidate the effects of superstimulatory protocols on the yield of viable embryos.


Sign in / Sign up

Export Citation Format

Share Document