Temporal simulation of diurnal temperature and relative humidity evolution at a forested mountainous site in Attica, Greece

2002 ◽  
Vol 11 (2) ◽  
pp. 95 ◽  
Author(s):  
Haralambos Feidas ◽  
Constantinos Cartalis ◽  
Constantinos Lagouvardos

Knowledge of the prevailing weather conditions regarding air temperature and humidity is critical for the definition of the Fire Weather and Fire Danger indices. In this study, two fitting algorithms were developed for the simulation of the diurnal air temperature and relative humidity cycles, using 2-hourly measurements at the forested site of Mount Parnes in Attica, Greece. Both algorithms use as input values the observed daily minimum and maximum values of air temperature and humidity to simulate the temperature and relative humidity daily cycles, respectively. In general, the algorithms provide satisfactory results especially for the three summer months (June, July and August). A 2-day prediction of the diurnal temperature and humidity cycles was also attempted using as input the temperature or humidity data of the previous days in the area of interest. The prediction may be considered satisfactory for the three summer months and less satisfactory for May and September due to weather instability. Finally a dynamic model was also used for supporting the performance of the developed algorithms, especially in the event of sudden weather changes.

2021 ◽  
Vol 20 (2) ◽  
pp. 56-67
Author(s):  
Rundk Hwaiz ◽  
◽  
Katan Ali ◽  
Namir Al-Tawil

Background: COVID-19 was first reported in Erbil province in Iraq on March 19, 2020. The effect of lockdown on reducing the spread of the novel coronavirus and the effect of weather conditions (air temperature and humidity) on the daily reported number of cases and death rate of COVID-19 were investigated during April to July, 2020. Objective: To investigate the effect of lock down on reducing the spread of the novel coronavirus pandemic and the effect of weather conditions (air temperature and humidity) on the daily reported number of cases and death rate of COVID-19. Patients and Methods: The data collected during three different periods, the first (total lockdown), followed by the second period of lockdown relaxation, which was followed by the third period (interrupted relaxation of lockdown) that reported hundreds of new cases daily. The real-time PCR .assay was performed on suspected COVID-19 patients according to the protocol established by the World Health Organization. Results: Temperature and relative humidity were recorded in Erbil city in Iraq. Patients’ age ranged (2-70) years old. Out of (1469) patients confirmed positive with COVID-19, 57.7% of them were males, 31.3% were females, and the rest (11%) were children. The mean number of patients per day was 32.77 during the period of interrupted relaxation lockdown which was significantly higher than in the total-lock down period (3.88 patient), and the relaxation lockdown period (1.93 patient). The mortality rate per day was 0.77 during the period of interrupted relaxation lockdown was significantly higher than the rates (0.0%) of the other periods. Moreover, increasing the temperature increased the number of confirmed cases in July while, low relative humidity significantly increased the rate of reported cases. Conclusion: The increase in the number of reported cases of COVID-19, might be related to the interruption of lockdown. Moreover, the daily reported cases and mortality rates increased by increasing the temperature from April to June.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Adina-Eliza Croitoru ◽  
Gabriela Dogaru ◽  
Titus Cristian Man ◽  
Simona Mălăescu ◽  
Marieta Motricală ◽  
...  

The main objective of this study was to analyze the perception of the influence of various weather conditions on patients with rheumatic pathology. A group of 394 patients, aged between 39 and 87 years and diagnosed with degenerative rheumatic diseases, were interviewed individually by using a questionnaire created specifically for this study. Further on, to assess the relationship between pain intensity and weather conditions, a frequency analysis based on Pearson’s correlation matrix was employed. The most important results are as follows: the great majority of the participants (more than 75%) believe that their rheumatic pain is definitely or to a great extent influenced by different weather conditions; most of the patients reported intensification of their pain with weather worsening, especially when cloudiness and humidity suddenly increase (83.8% and 82.0%, respectively), air temperature suddenly decreases (81.5%), and in fog or rain conditions (81.2%). In our research, alongside simple meteorological variables, we established that complex weather variables such as atmospheric fronts, in particular, the cold ones and winter anticyclonic conditions, greatly intensify the rheumatic pain, whereas summer anticyclonic conditions usually lead to a decrease in pain severity. In terms of relationships between pain intensity and weather conditions, we found the strongest correlations (ranging between 0.725 and 0.830) when temperature, relative humidity, and cloudiness are constantly high.


2012 ◽  
Vol 5 (1) ◽  
pp. 57-75
Author(s):  
Andrzej Araźny ◽  
Rajmund Przybylak

Abstract The article presents results of research on the development of air temperature and relative humidity at a height of 5 cm above the active surface of the terminal lateral moraine of the Aavatsmark Glacier, relative to its exposure in the summer season of 2010. Variations in the two conditions were analysed for five measurement sites situated on northerly (SN), easterly (SE), southerly (SS) and westerly (SW) slopes, as well as on the flat top surface of the moraine (STop), in different weather conditions. The article also includes a temperature and humidity stratification in the near surface air layer (5-200 cm) above the moraine. The issues were investigated for mean values from the whole period of research, as well as for individual days demonstrating distinct degrees of cloudiness and wind speed.


1973 ◽  
Vol 105 (7) ◽  
pp. 975-984 ◽  
Author(s):  
Robert Trottier

AbstractEmergence from the water of Anax junius Drury normally occurred after sunset. The onset was affected independently by water temperature and air temperature; low water temperature and high air temperature delayed the onset of emergence. In the field, the net vrtical distance travelled above the water, before ecdysis, was positively correlated with air temperature. In the laboratory, the vertical distance travelled above the water was greatest when air and water temperatures were approximately the same. The average speed of climbing to the first resting position above the water surface was faster at high than low water temperature, but the average speed of climbing from there to the final position, where ecdysis occurred, was reduced due to the effects of air temperature and humidity. Air temperatures below 12.6 °C were found to retard ecdysis and larvae returned to the water and emerged early the following day making the final process of emergence and ecdysis diurnal instead of nocturnal. The duration of ecdysis was shorter at high than low air temperatures and only the first three stages, as arbitrarily defined, were longer at low than high relative humidity; stage 4, shortened with low relative humidity. This study shows that A. Junius, emerging from the water is affected at first by the temperature experienced when submerged, but it becomes gradually and cumulatively affected by air temperature and humidity while climbing to the ecdysial position and moulting.


Author(s):  
Josh Foster ◽  
James W. Smallcombe ◽  
Simon Hodder ◽  
Ollie Jay ◽  
Andreas D. Flouris ◽  
...  

Abstract Increasing air movement can alleviate or exacerbate occupational heat strain, but the impact is not well defined across a wide range of hot environments, with different clothing levels. Therefore, we combined a large empirical study with a physical model of human heat transfer to determine the climates where increased air movement (with electric fans) provides effective body cooling. The model allowed us to generate practical advice using a high-resolution matrix of temperature and humidity. The empirical study involved a total of 300 1-h work trials in a variety of environments (35, 40, 45, and 50 °C, with 20 up to 80% relative humidity) with and without simulated wind (3.5 vs 0.2 m∙s−1), and wearing either minimal clothing or a full body work coverall. Our data provides compelling evidence that the impact of fans is strongly determined by air temperature and humidity. When air temperature is ≥ 35 °C, fans are ineffective and potentially harmful when relative humidity is below 50%. Our simulated data also show the climates where high wind/fans are beneficial or harmful, considering heat acclimation, age, and wind speed. Using unified weather indices, the impact of air movement is well captured by the universal thermal climate index, but not by wet-bulb globe temperature and aspirated wet-bulb temperature. Overall, the data from this study can inform new guidance for major public and occupational health agencies, potentially maintaining health and productivity in a warming climate.


2020 ◽  
Author(s):  
Chen Zhang ◽  
Hua Liao ◽  
Eric Strol ◽  
Hui Li ◽  
Ru Li ◽  
...  

It is believe that weather conditions such as temperature and humidity have effects on COVID-19 transmission. However, these effects are not clear due to the limited observations and difficulties in separating impacts of social distancing. COVID-19 data and social-economic features of 1236 regions in the world (1112 re-gions at the provincial level and 124 countries with small land area) were collected. A Large-scale satellite data was combined with these data with a regression analysis model to explore effects of temperature and relative humidity on COVID-19 spreading, as well as the possible transmission risk by seasonal cycles. The result show that temper-ature and relative humidity are shown to be negatively correlated with COVID-19 transmission throughout the world. Further, the effect of temperature and humidity is almost linear based on our samples, with uncertainty sur-rounding any nonlinear effects. Government intervention (e.g. lockdown policies) and lower population movement contributed to the decrease the new daily case ratio. The conclusions withstand several robustness checks, such as observation scales and maximum/minimum temperature. Weather conditions are not the decisive factor in COVID-19 transmission, in that government intervention as well as public awareness, could contribute to the miti-gation of the spreading of the virus. As temperature drops in winter, the transmission possibly speeds up again. It deserves a dynamic government policy to mitigate COVID-19 transmission in winter.


2012 ◽  
Vol 610-613 ◽  
pp. 1150-1154 ◽  
Author(s):  
Lu Zhang ◽  
Zhi Yao Su ◽  
Xiang Lin Wang

Temporal and spatial patterns of temperature and humidity in shelterbelts of Taxodium distichum were investigated using routine observation and gradient observation methods in sampling plots placed in Taxodium distichum shelterbelts, sugarcane, and open (blank) fields, respectively. The results showed that: 1) Taxodium distichum shelterbelts mitigated air temperature in July. Air temperature of Taxodium distichum shelterbelts was 0.7 °C and 1.7 °C lower than that of sugarcane field and blank field in July, respectively, while less change of air temperature in January was recorded. Air temperature at 20 cm from the ground in the Taxodium distichum shelterbelts was the highest in April, October and January, but the lowest in July; 2) Relative humidity in the Taxodium distichum shelterbelts was higher than in blank field through the four seasons, but lower than in sugarcane field in July, October and January. Relative humidity in sugarcane field and Taxodium distichum shelterbelts was higher near the ground, and relative humidity in sugarcane field increased significantly; 3) One-way ANOVA followed by Tukey’s HSD indicated that both air temperature and relative humidity were significantly different with a seasonal pattern among shelterbelts of Taxodium distichum, sugarcane field and open field (P<0.001).


1941 ◽  
Vol 31 (1) ◽  
pp. 110-115 ◽  
Author(s):  
P. N. Sahni

Natural drainage periods, i.e. periods between consecutive cessations of flow of the Rothamsted 20 in. drain gauge, were selected for the months of June, July and August. All periods of from 2 to 13 days were taken.A curvilinear relationship between the difference of rainfall and drainage (deficit) and rainfall was established.Residuals from this curve showed no appreciable correlation with the mean air temperature, but there was some slight evidence that the deficit was increased by a decrease in relative humidity or an increase in wind velocity.The residuals showed little correlation with drainage during the previous 3 weeks.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 906
Author(s):  
Fazandra Yusfiandika ◽  
Chun Lim Siow ◽  
Chandima Gomes ◽  
Aravind Chockalingam ◽  
Lee Cheng Pay

Background COVID-19 has drastically dampened human activities since early 2020. Studies have shown that this has resulted in changes in air temperature and humidity. Since lightning activities are dependent on air temperature and humidity, this study is conducted to evaluate the correlation between the intensity of lightning activities with the atmospheric changes, and investigates the changes, in lightning activities due to atmospheric changes during the COVID-19 pandemic. Methods The hypothesis was tested through a t-test and Pearson’s correlation study. The variation trend of lightning strikes count (LSC) in Europe and Oceania during the five months COVID-19 lockdown period (March – July) compared to the same period in the previous five years from 2015 to 2019 is investigated. Results Statistical analysis shows the LSC in Europe and Oceania during the lockdown period dropped significantly by more than 50% and 44% respectively compared to the same period in previous five years. Furthermore, LSC was found to be positively correlated with air temperature and relative humidity in Europe. However, in Oceania, LSC seems to be only positively correlated with air temperature but negatively correlated with relative humidity. Conclusions This study seems to suggest that lightning activities have significantly changed during this pandemic due to reduction in human activities.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 501A-501
Author(s):  
Chris A. Martin ◽  
L. Brooke McDowell

Seedlings of Olneya tesota A. Gray (desert ironwood) were grown in 12-L containers filled with a peatmoss and pumice substrate (1:1 v/v) for 3 months under simulated summer or winter Sonoran Desert conditions in a walk-in growth chamber. Growth room irradiance (550 mmol•m-2•s-1) was provided with an even mixture of mercury vapor and high-pressure sodium high-intensity discharge lamps. Growth room air temperature and relative humidity were ramped hourly to approximate typical summer or winter weather conditions based on mean seasonal climatological data for Phoenix, Ariz. For simulated summer conditions, maximum/minimum air temperature range was 40/28 °C and maximum/minimum relative humidity range was 25%/12%. Photoperiod was 16 h. For simulated winter conditions, maximum/minimum air temperature and relative humidity were 20/5 °C and 80%/35%, respectively. Photoperiod was 10 h. After 2 months, desert ironwood root systems were cleaned of substrate by floatation in a water bath, pruned to a length of 15 cm, repotted, and then grown for an additional month under the same conditions. Only 41% of desert ironwood survived root pruning under summer conditions compared with a 100% survival rate under winter conditions. For surviving desert ironwood, shoot and root extension growth was significantly greater under summer conditions.


Sign in / Sign up

Export Citation Format

Share Document