scholarly journals Fatty acid synthase is preferentially degraded by autophagy upon nitrogen starvation in yeast

2015 ◽  
Vol 112 (5) ◽  
pp. 1434-1439 ◽  
Author(s):  
Tomer Shpilka ◽  
Evelyn Welter ◽  
Noam Borovsky ◽  
Nira Amar ◽  
Frida Shimron ◽  
...  

Autophagy, an evolutionarily conserved intracellular catabolic process, leads to the degradation of cytosolic proteins and organelles in the vacuole/lysosome. Different forms of selective autophagy have recently been described. Starvation-induced protein degradation, however, is considered to be nonselective. Here we describe a novel interaction between autophagy-related protein 8 (Atg8) and fatty acid synthase (FAS), a pivotal enzymatic complex responsible for the entire synthesis of C16- and C18-fatty acids in yeast. We show that although FAS possesses housekeeping functions, under starvation conditions it is delivered to the vacuole for degradation by autophagy in a Vac8- and Atg24-dependent manner. We also provide evidence that FAS degradation is essential for survival under nitrogen deprivation. Our results imply that during nitrogen starvation specific proteins are preferentially recruited into autophagosomes

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2042 ◽  
Author(s):  
Yae Rim Choi ◽  
Jaewon Shim ◽  
Min Jung Kim

Soy isoflavones are popular ingredients with anti-adipogenic and anti-lipogenic properties. The anti-adipogenic and anti-lipogenic properties of genistein are well-known, but those of genistin and glycitein remain unknown, and those of daidzein are characterized by contrasting data. Therefore, the purpose of our study was to investigate the effects of daidzein, glycitein, genistein, and genistin on adipogenesis and lipogenesis in 3T3-L1 cells. Proliferation of 3T3-L1 preadipocytes was unaffected by genistin and glycitein, but it was affected by 50 and 100 µM genistein and 100 µM daidzein for 48 h. Among the four isoflavones, only 50 and 100 µM genistin and genistein markedly suppressed lipid accumulation during adipogenesis in 3T3-L1 cells through a similar signaling pathway in a dose-dependent manner. Genistin and genistein suppress adipocyte-specific proteins and genes, such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBPα), and adipocyte binding protein 2 (aP2)/fatty acid-binding protein 4 (FABP4), and lipogenic enzymes such as ATP citrate lyase (ACL), acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FAS). Both isoflavones also activate AMP-activated protein kinase α (AMPKα), an essential factor in adipocyte differentiation, and inhibited sterol regulatory element-binding transcription factor 1c (SREBP-1c). These results indicate that genistin is a potent anti-adipogenic and anti-lipogenic agent.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xudong Huang ◽  
Ling Pan ◽  
Zhixiang Zuo ◽  
Mei Li ◽  
Lingxing Zeng ◽  
...  

AbstractThe molecular mechanism underlying pancreatic ductal adenocarcinoma (PDAC) malignancy remains unclear. Here, we characterize a long intergenic non-coding RNA LINC00842 that plays a role in PDAC progression. LINC00842 expression is upregulated in PDAC and induced by high concentration of glucose via transcription factor YY1. LINC00842 binds to and prevents acetylated PGC-1α from deacetylation by deacetylase SIRT1 to form PGC-1α, an important transcription co-factor in regulating cellular metabolism. LINC00842 overexpression causes metabolic switch from mitochondrial oxidative catabolic process to fatty acid synthesis, enhancing the malignant phenotypes of PDAC cells. High LINC00842 levels are correlated with elevated acetylated- PGC-1α levels in PDAC and poor patient survival. Decreasing LINC00842 level and inhibiting fatty acid synthase activity significantly repress PDAC growth and invasiveness in mouse pancreatic xenograft or patient-derived xenograft models. These results demonstrate that LINC00842 plays a role in promoting PDAC malignancy and thus might serve as a druggable target.


2021 ◽  
Author(s):  
Krithika P. Karthigeyan ◽  
Lizhi Zhang ◽  
David R. Loiselle ◽  
Timothy A.J. Haystead ◽  
Menakshi Bhat ◽  
...  

Cells acquire fatty acids from dietary sources or via de novo palmitate production by fatty acid synthase (FASN). Although most cells express FASN at low levels, it is upregulated in cancers and during replication of many viruses. The precise role of FASN in disease pathogenesis is poorly understood, and whether de novo fatty acid synthesis contributes to host or viral protein acylation has been traditionally difficult to study. We describe a cell permeable, click-chemistry compatible alkynyl-acetate analog (Alk-4) that functions as a reporter of FASN-dependent protein acylation. In a FASN-dependent manner, Alk-4 selectively labeled the cellular protein interferon-induced transmembrane protein 3 (IFITM3) at its palmitoylation sites, and the HIV-1 matrix protein at its myristoylation site. Alk-4 metabolic labeling also enabled biotin-based purification and identification of more than 200 FASN-dependent acylated cellular proteins. Thus, Alk-4 is a useful bioorthogonal tool to selectively probe FASN-mediated protein acylation in normal and diseased states.


1996 ◽  
Vol 40 (12) ◽  
pp. 2813-2819 ◽  
Author(s):  
R A Slayden ◽  
R E Lee ◽  
J W Armour ◽  
A M Cooper ◽  
I M Orme ◽  
...  

Thiolactomycin (TLM) possesses in vivo antimycobacterial activity against the saprophytic strain Mycobacterium smegmatis mc2155 and the virulent strain M. tuberculosis Erdman, resulting in complete inhibition of growth on solid media at 75 and 25 micrograms/ml, respectively. Use of an in vitro murine macrophage model also demonstrated the killing of viable intracellular M. tuberculosis in a dose-dependent manner. Through the use of in vivo [1,2-14C]acetate labeling of M. smegmatis, TLM was shown to inhibit the synthesis of both fatty acids and mycolic acids. However, synthesis of the shorter-chain alpha'-mycolates of M. smegmatis was not inhibited by TLM, whereas synthesis of the characteristic longer-chain alpha-mycolates and epoxymycolates was almost completely inhibited at 75 micrograms/ml. The use of M. smegmatis cell extracts demonstrated that TLM specifically inhibited the mycobacterial acyl carrier protein-dependent type II fatty acid synthase (FAS-II) but not the multifunctional type I fatty acid synthase (FAS-I). In addition, selective inhibition of long-chain mycolate synthesis by TLM was demonstrated in a dose-response manner in purified, cell wall-containing extracts of M. smegmatis cells. The in vivo and in vitro data and knowledge of the mechanism of TLM resistance in Escherichia coli suggest that two distinct TLM targets exist in mycobacteria, the beta-ketoacyl-acyl carrier protein synthases involved in FAS-II and the elongation steps leading to the synthesis of the alpha-mycolates and oxygenated mycolates. The efficacy of TLM against M. smegmatis and M. tuberculosis provides the prospects of identifying fatty acid and mycolic acid biosynthetic genes and revealing a novel range of chemotherapeutic agents directed against M. tuberculosis.


Endocrinology ◽  
2008 ◽  
Vol 149 (9) ◽  
pp. 4534-4543 ◽  
Author(s):  
María J. Vázquez ◽  
C. Ruth González ◽  
Luis Varela ◽  
Ricardo Lage ◽  
Sulay Tovar ◽  
...  

Evidence suggests that the adipocyte-derived hormone resistin (RSTN) directly regulates both feeding and peripheral metabolism through, so far, undefined hypothalamic-mediated mechanisms. Here, we demonstrate that the anorectic effect of RSTN is associated with inappropriately decreased mRNA expression of orexigenic (agouti-related protein and neuropeptide Y) and increased mRNA expression of anorexigenic (cocaine and amphetamine-regulated transcript) neuropeptides in the arcuate nucleus of the hypothalamus. Of interest, RSTN also exerts a profound nutrition-dependent inhibitory effect on hypothalamic fatty acid metabolism, as indicated by increased phosphorylation levels of both AMP-activated protein kinase and its downstream target acetyl-coenzyme A carboxylase, associated with decreased expression of fatty acid synthase in the ventromedial nucleus of the hypothalamus. In addition, we also demonstrate that chronic central RSTN infusion results in decreased body weight and major changes in peripheral expression of lipogenic enzymes, in a tissue-specific and nutrition-dependent manner. Thus, in the fed state central RSTN is associated with induced expression of fatty acid synthesis enzymes and proinflammatory cytokines in liver, whereas its administration in the fasted state does so in white adipose tissue. Overall, our results indicate that RSTN controls feeding and peripheral lipid metabolism and suggest that hepatic RSTN-induced insulin resistance may be mediated by central activation of de novo lipogenesis in liver.


2004 ◽  
Vol 181 (2) ◽  
pp. 271-280 ◽  
Author(s):  
I Louveau ◽  
F Gondret

The ability of GH to decrease fatness and insulin-regulated events such as lipogenic enzyme activities is well known in pigs. Nevertheless, the precise mechanism underlying these actions has not been elucidated yet. Expression of the transcription factor sterol regulatory element binding protein (SREBP)-1 has been reported as a key mediator of insulin action in rat hepatocytes and adipose cell lines. The present study aimed to determine whether the regulation of lipogenesis by GH and/or insulin in porcine adipocytes also involved SREBP-1. Isolated adipocytes, obtained from perirenal or s.c. adipose tissue samples of female pigs (51+/-0.4 kg; n=17), were cultured in serum-free medium in the absence or presence of these hormones for up to 4 days. Glucose incorporation and fatty acid synthase activity were increased by insulin in a dose-dependent manner in adipocytes of both sites. The increase was maximal at 1.7 and 17 nM in s.c. and perirenal adipocytes respectively, suggesting inter-depot differences in the regulation of lipogenesis by insulin. These insulin-stimulated events were decreased by GH (1 nM). No change in SREBP-1 mRNA levels was observed in response to GH and/or insulin. Taken together, these data indicate that the regulation of lipogenesis by insulin and GH appears to not involve changes in SREBP-1 mRNA levels in porcine adipocytes.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Xiang Tian ◽  
Qin Ru ◽  
Qi Xiong ◽  
Ruojian Wen ◽  
Yong Chen

The increased prevalence of nonalcoholic fatty liver disease (NAFLD), which develops from hepatic steatosis, represents a public health challenge. Catalpol, a natural component extracted from the roots of Radix Rehmanniae, has several pharmacological activities. The present study is aimed at examining whether catalpol prevents hepatic steatosis in cell and animal experiments and elucidating the possible mechanisms. HepG2 cells were treated with 300 μM palmitate (PA) and/or catalpol for 24 h in vitro, and male C57BL/6J mice fed a high-fat diet (HFD) were administered catalpol for 18 weeks in vivo. The results revealed that catalpol significantly decreased lipid accumulation in PA-treated HepG2 cells. Moreover, catalpol drastically reduced body weight and lipid accumulation in the liver, whereas it ameliorated hepatocyte steatosis in HFD-fed mice. Notably, catalpol remarkably promoted the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase. Subsequently, catalpol repressed the expressions of lipogenesis-associated genes such as sterol regulatory element-binding protein 1c and fatty acid synthase but promoted the expressions of genes associated with fatty acid β-oxidation such as peroxisome proliferator-activated receptor α together with its target genes carnitine palmitoyltransferase 1 and acyl-CoA oxidase 1 (ACOX1). However, the preincubation of the HepG2 cells with compound C (10 μM), an AMPK inhibitor, prevented catalpol-mediated beneficial effects. These findings suggest that catalpol ameliorates hepatic steatosis by suppressing lipogenesis and enhancing fatty acid β-oxidation in an AMPK-dependent manner. Therefore, catalpol has potential as a novel agent in the treatment of NAFLD.


2017 ◽  
Vol 118 (12) ◽  
pp. 1010-1022 ◽  
Author(s):  
Sam J. S. Houston ◽  
Vasileios Karalazos ◽  
John Tinsley ◽  
Mónica B. Betancor ◽  
Samuel A. M. Martin ◽  
...  

AbstractThe replacement of fish oil (FO) with vegetable oil (VO) in feed formulations reduces the availability ofn-3 long-chain PUFA (LC-PUFA) to marine fish such as gilthead seabream. The aim of this study was to examine compositional and physiological responses to a dietary gradient ofn-3 LC-PUFA. Six iso-energetic and iso-nitrogenous diets (D1–D6) were fed to seabream, with the added oil being a blend of FO and VO to achieve a dietary gradient ofn-3 LC-PUFA. Fish were sampled after 4 months feeding, to determine biochemical composition, tissue fatty acid concentrations and lipid metabolic gene expression. The results indicated a disturbance to lipid metabolism, with fat in the liver increased and fat deposits in the viscera reduced. Tissue fatty acid profiles were altered towards the fatty acid compositions of the diets. There was evidence of endogenous modification of dietary PUFA in the liver which correlated with the expression of fatty acid desaturase 2 (fads2). Expression of sterol regulatory element binding protein 1 (srebp1), fads2and fatty acid synthase increased in the liver, whereas PPARα1 pathways appeared to be supressed by dietary VO in a concentration-dependent manner. The effects in lipogenic genes appear to become measurable in D1–D3, which agrees with the weight gain data suggesting that disturbances to energy metabolism and lipogenesis may be related to performance differences. These findings suggested that suppression ofβ-oxidation and stimulation ofsrebp1-mediated lipogenesis may play a role in contributing toward steatosis in fish fedn-3 LC-PUFA deficient diets.


2018 ◽  
Author(s):  
Colleen M. Bianco ◽  
Kathrin S. Fröhlich ◽  
Carin K. Vanderpool

AbstractAltering membrane protein and lipid composition is an important strategy for maintaining membrane integrity during environmental stress. Many bacterial small RNAs (sRNAs) control membrane protein production, but sRNA-mediated regulation of membrane fatty acid composition is less understood. The sRNA RydC was previously shown to stabilize cfa (cyclopropane fatty acid synthase) mRNA, resulting in higher levels of cyclopropane fatty acids in the cell membrane. Here, we report that three additional sRNAs, ArrS, CpxQ, and GadF also regulate cfa post-transcriptionally. RydC, ArrS, and GadF act through masking an RNase E cleavage site in the cfa mRNA 5’ untranslated region (UTR), and all three sRNAs post-transcriptionally activate cfa. In contrast, CpxQ binds to a different site in the cfa mRNA 5’ UTR and represses cfa. Alteration of membrane lipid composition is a key mechanism for bacteria to survive low pH environments, and we show that cfa translation increases in an sRNA-dependent manner when cells are subjected to mild acid stress. This work suggests an important role for sRNAs in the acid stress response through regulation of cfa mRNA.


Sign in / Sign up

Export Citation Format

Share Document