scholarly journals X-ray phase-contrast tomography with a compact laser-driven synchrotron source

2015 ◽  
Vol 112 (18) ◽  
pp. 5567-5572 ◽  
Author(s):  
Elena Eggl ◽  
Simone Schleede ◽  
Martin Bech ◽  
Klaus Achterhold ◽  
Roderick Loewen ◽  
...  

Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced––and more challenging––X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches.

Electron spectroscopy is at present developing towards higher resolution both at low and high energies of the exciting radiation. The limitations are set by quite different reasons in the two regions, i.e. in the v.u.v. and in the X -ray region. In the former region the limit is due to several independent factors: Doppler broadening in the sample gas, small residual electric fields over the sample volume and, of course, possible imperfections of the electron spectrometer. In addition to this the ultimate resolution is set by the inherent line width of the u.v. radiation. This width is dependent on the extremely high temperature of the light-source gas, owing to Doppler effect, and the gas pressure, owing to self-absorption. If a resolution of 5 m eV should be attained all these factors have to be thoroughly studied and separately handled. This leads to arrangements where supersonic molecular jet beams are required, where developments of specially designed light sources are necessary and where extreme care has to be taken over the details of the spectrometer. A new extension of electron spectroscopy is under development. It consists of a simultaneous excitation or fragmentation of the molecules at photoionization. There are several ways to arrange such a spectroscopy, which, for convenience, could be classified as a ‘ dynamic ’ electron spectroscopy in contrast to the usual ‘ static ’ spectroscopy, which deals with the emission of electrons from normal molecules. A particularly attractive scheme for such a dynamic spectroscopy would be a combination between electron and laser spectroscopy. In the X -ray region high resolution cannot be attained unless the selected X -rays are further properly monochromatized towards the limit set by the rocking curve of the diffracting crystal being used. To secure sufficiently high intensity a high-power X -ray source has to be used, either a synchrotron source or a water-cooled, swiftly rotating anode. For the latter, experiments and calculations show that Al Kot and spherically bent quartz crystals (1010, 1st order diffraction) with almost backwards reflection can yield a resolution of 0.15 eV. With nearly identical geometry Ag L a (second order) has a rocking curve of the same crystal, which amounts to 0.08 eV. Sc 3 and Ti K a (third order) have 0.03 eV resolution, and M n K a and C r K p t 3 (fourth order) also 0.03 eV. For most purposes the first choice (Al K a) is the one to be preferred. Some recent investigations related to solids, gases and liquids made by several groups in our laboratory are reviewed.


Author(s):  
R. L. Stears

Because of the nature of the bacterial endospore, little work has been done on analyzing their elemental distribution and composition in the intact, living, hydrated state. The majority of the qualitative analysis entailed intensive disruption and processing of the endospores, which effects their cellular integrity and composition.Absorption edge imaging permits elemental analysis of hydrated, unstained specimens at high resolution. By taking advantage of differential absorption of x-ray photons in regions of varying elemental composition, and using a high brightness, tuneable synchrotron source to obtain monochromatic x-rays, contact x-ray micrographs can be made of unfixed, intact endospores that reveal sites of elemental localization. This study presents new data demonstrating the application of x-ray absorption edge imaging to produce elemental information about nitrogen (N) and calcium (Ca) localization using Bacillus thuringiensis as the test specimen.


1996 ◽  
Vol 2 (2) ◽  
pp. 53-62 ◽  
Author(s):  
Henry N. Chapman ◽  
Jenny Fu ◽  
Chris Jacobsen ◽  
Shawn Williams

The methods of immunolabeling make visible the presence of specific antigens, proteins, genetic sequences, or functions of a cell. In this paper we present examples of imaging immunolabels in a scanning transmission x-ray microscope using the novel method of dark-field contrast. Colloidal gold, or silver-enhanced colloidal gold, is used as a label, which strongly scatters x-rays. This leads to a high-contrast dark-field image of the label and reduced radiation dose to the specimen. The x-ray images are compared with electron micrographs of the same labeled, unsectioned, whole cell. It is verified that the dark-field x-ray signal is primarily due to the label and the bright-field x-ray signal, showing absorption due to carbon, is largely unaffected by the label. The label can be well visualized even when it is embedded in or laying behind dense material, such as the cell nucleus. The resolution of the images is measured to be 60 nm, without the need for computer processing. This figure includes the x-ray microscope resolution and the accuracy of the label positioning. The technique should be particularly useful for the study of relatively thick (up to 10 μm), wet, or frozen hydrated specimens.


Author(s):  
L Hernández-García ◽  
F Panessa ◽  
L Bassani ◽  
G Bruni ◽  
F Ursini ◽  
...  

Abstract Mrk 1498 is part of a sample of galaxies with extended emission line regions (extended outwards up to a distance of ∼7 kpc) suggested to be photo-ionized by an AGN that has faded away or that is still active but heavily absorbed. Interestingly, the nucleus of Mrk 1498 is at the center of two giant radio lobes with a projected linear size of 1.1 Mpc. Our multi-wavelength analysis reveals a complex nuclear structure, with a young radio source (Giga-hertz Peaked Spectrum) surrounded by a strong X-ray nuclear absorption, a mid-infrared spectrum that is dominated by the torus emission, plus a circum-nuclear extended emission in the [OIII] image (with radius of ∼ 1 kpc), most likely related to the ionization of the AGN, aligned with the small and large scale radio jet and extended also at X-rays. In addition a large-scale extended emission (up to ∼ 10 kpc) is only visible in [OIII]. These data show conclusive evidence of a heavily absorbed nucleus and has recently restarted its nuclear activity. To explain its complexity, we propose that Mrk 1498 is the result of a merging event or secular processes, such as a minor interaction, that has triggered the nuclear activity and produced tidal streams. The large-scale extended emission that gives place to the actual morphology could either be explained by star formation or outflowing material from the AGN.


Author(s):  
Tetsuya Ishikawa

The evolution of synchrotron radiation (SR) sources and related sciences is discussed to explain the ‘generation’ of the SR sources. Most of the contemporary SR sources belong to the third generation, where the storage rings are optimized for the use of undulator radiation. The undulator development allowed to reduction of the electron energy of the storage ring necessary for delivering 10 keV X-rays from the initial 6–8 GeV to the current 3 Gev. Now is the transitional period from the double-bend-achromat lattice-based storage ring to the multi-bend-achromat lattice to achieve much smaller electron beam emittance. Free electron lasers are the other important accelerator-based light sources which recently reached hard X-ray regime by using self-amplified spontaneous emission scheme. Future accelerator-based X-ray sources should be continuous wave X-ray free electron lasers and pulsed X-ray free electron lasers. Some pathways to reach the future case are discussed. This article is part of the theme issue ‘Fifty years of synchrotron science: achievements and opportunities’.


2013 ◽  
Vol 21 (1) ◽  
pp. 242-250 ◽  
Author(s):  
Elisabeth Schültke ◽  
Ralf Menk ◽  
Bernd Pinzer ◽  
Alberto Astolfo ◽  
Marco Stampanoni ◽  
...  

Gold nanoparticles are excellent intracellular markers in X-ray imaging. Having shown previously the suitability of gold nanoparticles to detect small groups of cells with the synchrotron-based computed tomography (CT) technique bothex vivoandin vivo, it is now demonstrated that even single-cell resolution can be obtained in the brain at leastex vivo. Working in a small animal model of malignant brain tumour, the image quality obtained with different imaging modalities was compared. To generate the brain tumour, 1 × 105C6 glioma cells were loaded with gold nanoparticles and implanted in the right cerebral hemisphere of an adult rat. Raw data were acquired with absorption X-ray CT followed by a local tomography technique based on synchrotron X-ray absorption yielding single-cell resolution. The reconstructed synchrotron X-ray images were compared with images obtained by small animal magnetic resonance imaging. The presence of gold nanoparticles in the tumour tissue was verified in histological sections.


2016 ◽  
Vol 23 (1) ◽  
pp. 141-151 ◽  
Author(s):  
A. G. Stepanov ◽  
C. P. Hauri

High-brightness X-ray radiation produced by third-generation synchrotron light sources (TGLS) has been used for numerous time-resolved investigations in many different scientific fields. The typical time duration of X-ray pulses delivered by these large-scale machines is about 50–100 ps. A growing number of time-resolved studies would benefit from X-ray pulses with two or three orders of magnitude shorter duration. Here, techniques explored in the past for shorter X-ray pulse emission at TGLS are reviewed and the perspective towards the realisation of picosecond and sub-picosecond X-ray pulses are discussed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephan Umkehrer ◽  
Carmela Morrone ◽  
Julien Dinkel ◽  
Laura Aigner ◽  
Maximilian F. Reiser ◽  
...  

Abstract In this study we aim to evaluate the assessment of bronchial pathologies in a murine model of lung transplantation with grating-based X-ray interferometry in vivo. Imaging was performed using a dedicated grating-based small-animal X-ray dark-field and phase-contrast scanner. While the contrast modality of the dark-field signal already showed several promising applications for diagnosing various types of pulmonary diseases, the phase-shifting contrast mechanism of the phase contrast has not yet been evaluated in vivo. For this purpose, qualitative analysis of phase-contrast images was performed and revealed pathologies due to previous lung transplantation, such as unilateral bronchial stenosis or bronchial truncation. Dependent lung parenchyma showed a strong loss in dark-field and absorption signal intensity, possibly caused by several post transplantational pathologies such as atelectasis, pleural effusion, or pulmonary infiltrates. With this study, we are able to show that bronchial pathologies can be visualized in vivo using conventional X-ray imaging when phase-contrast information is analysed. Absorption and dark-field images can be used to quantify the severity of lack of ventilation in the affected lung.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Stephanie Kulpe ◽  
Martin Dierolf ◽  
Benedikt Günther ◽  
Madleen Busse ◽  
Klaus Achterhold ◽  
...  

Abstract In clinical diagnosis, X-ray computed tomography (CT) is one of the most important imaging techniques. Yet, this method lacks the ability to differentiate similarly absorbing substances like commonly used iodine contrast agent and calcium which is typically seen in calcifications, kidney stones and bones. K-edge subtraction (KES) imaging can help distinguish these materials by subtracting two CT scans recorded at different X-ray energies. So far, this method mostly relies on monochromatic X-rays produced at large synchrotron facilities. Here, we present the first proof-of-principle experiment of a filter-based KES CT method performed at a compact synchrotron X-ray source based on inverse-Compton scattering, the Munich Compact Light Source (MuCLS). It is shown that iodine contrast agent and calcium can be clearly separated to provide CT volumes only showing one of the two materials. These results demonstrate that KES CT at a compact synchrotron source can become an important tool in pre-clinical research.


2019 ◽  
Vol 26 (2) ◽  
pp. 445-449
Author(s):  
N. Patra ◽  
U. G. P. S. Sachan ◽  
S. SundarRajan ◽  
Sanjay Malhotra ◽  
Vijay Harad ◽  
...  

Setting up of the X-ray Magnetic Circular Dichroism (XMCD) measurement facility with hard X-rays at the Energy-Dispersive EXAFS beamline (BL-08) at the Indus-2 synchrotron source is reported. This includes the design and development of a water-cooled electromagnet having a highest magnetic field of 2 T in a good field volume of 125 mm3 and having a 10 mm hole throughout for passage of the synchrotron beam. This also includes the development of an (X–Z–θ) motion stage for the heavy electromagnet for aligning its axis and the beam hole along the synchrotron beam direction. Along with the above developments, also reported is the first XMCD signal measured on a thick Gd film in the above set-up which shows good agreement with the reported results. This is the first facility to carry out XMCD measurement with hard X-rays in India.


Sign in / Sign up

Export Citation Format

Share Document