scholarly journals Ketamine produces antidepressant-like effects through phosphorylation-dependent nuclear export of histone deacetylase 5 (HDAC5) in rats

2015 ◽  
Vol 112 (51) ◽  
pp. 15755-15760 ◽  
Author(s):  
Miyeon Choi ◽  
Seung Hoon Lee ◽  
Sung Eun Wang ◽  
Seung Yeon Ko ◽  
Mihee Song ◽  
...  

Ketamine produces rapid antidepressant-like effects in animal assays for depression, although the molecular mechanisms underlying these behavioral actions remain incomplete. Here, we demonstrate that ketamine rapidly stimulates histone deacetylase 5 (HDAC5) phosphorylation and nuclear export in rat hippocampal neurons through calcium/calmodulin kinase II- and protein kinase D-dependent pathways. Consequently, ketamine enhanced the transcriptional activity of myocyte enhancer factor 2 (MEF2), which leads to regulation of MEF2 target genes. Transfection of a HDAC5 phosphorylation-defective mutant (Ser259/Ser498 replaced by Ala259/Ala498, HDAC5-S/A), resulted in resistance to ketamine-induced nuclear export, suppression of ketamine-mediated MEF2 transcriptional activity, and decreased expression of MEF2 target genes. Behaviorally, viral-mediated hippocampal knockdown of HDAC5 blocked or occluded the antidepressant effects of ketamine both in unstressed and stressed animals. Taken together, our results reveal a novel role of HDAC5 in the actions of ketamine and suggest that HDAC5 could be a potential mechanism contributing to the therapeutic actions of ketamine.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiulin Jiang ◽  
Baiyang Liu ◽  
Zhi Nie ◽  
Lincan Duan ◽  
Qiuxia Xiong ◽  
...  

AbstractN6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as “readers”. Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 715
Author(s):  
Tamara Tomanić ◽  
Claire Martin ◽  
Holly Stefen ◽  
Esmeralda Parić ◽  
Peter Gunning ◽  
...  

Tropomyosins (Tpms) have been described as master regulators of actin, with Tpm3 products shown to be involved in early developmental processes, and the Tpm3 isoform Tpm3.1 controlling changes in the size of neuronal growth cones and neurite growth. Here, we used primary mouse hippocampal neurons of C57/Bl6 wild type and Bl6Tpm3flox transgenic mice to carry out morphometric analyses in response to the absence of Tpm3 products, as well as to investigate the effect of C-terminal truncation on the ability of Tpm3.1 to modulate neuronal morphogenesis. We found that the knock-out of Tpm3 leads to decreased neurite length and complexity, and that the deletion of two amino acid residues at the C-terminus of Tpm3.1 leads to more detrimental changes in neurite morphology than the deletion of six amino acid residues. We also found that Tpm3.1 that lacks the 6 C-terminal amino acid residues does not associate with stress fibres, does not segregate to the tips of neurites, and does not impact the amount of the filamentous actin pool at the axonal growth cones, as opposed to Tpm3.1, which lacks the two C-terminal amino acid residues. Our study provides further insight into the role of both Tpm3 products and the C-terminus of Tpm3.1, and it forms the basis for future studies that aim to identify the molecular mechanisms underlying Tpm3.1 targeting to different subcellular compartments.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Minjie Deng ◽  
Yabing Cao ◽  
Zhenli Zhao ◽  
Lu Yang ◽  
Yanfang Zhang ◽  
...  

Understanding the role of miRNAs in regulating the molecular mechanisms responsive to drought stress was studied in Paulownia “yuza 1.” Two small RNA libraries and two degradome libraries were, respectively, constructed and sequenced in order to detect miRNAs and their target genes associated with drought stress. A total of 107 miRNAs and 42 putative target genes were identified in this study. Among them, 77 miRNAs were differentially expressed between drought-treated Paulownia “yuza 1” and the control (60 downregulated and 17 upregulated). The predicted target genes were annotated using the GO, KEGG, and Nr databases. According to the functional classification of the target genes, Paulownia “yuza 1” may respond to drought stress via plant hormone signal transduction, photosynthesis, and osmotic adjustment. Furthermore, the expression levels of seven miRNAs (ptf-miR157b, ptf-miR159b, ptf-miR398a, ptf-miR9726a, ptf-M2153, ptf-M2218, and ptf-M24a) and their corresponding target genes were validated by quantitative real-time PCR. The results provide relevant information for understanding the molecular mechanism of Paulownia resistance to drought and reference data for researching drought resistance of other trees.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Xianshuang Liu ◽  
Chopp Michael ◽  
Xinli Wang ◽  
Li Zhang ◽  
Yisheng Cui ◽  
...  

Background: Neurogenesis and oligodendrogenesis are associated with functional recovery after stroke. However, the molecules that regulate the generation of new neurons and oligodendrocytes have not been fully investigated. MicroRNAs (miRNAs) post-transcriptionally regulate gene expression. MiR-146a has been reported to regulate the immune response in cells, but the role of miR-146a in neural (NPCs) and oligodendrocyte progenitor cells (OPCs) remains unexplored. Methods and Results: Adult Wistar rats were subjected to right middle cerebral artery occlusion (MCAo). In situ hybridization using locked nucleic acid (LNA)probes against miR-146a showed that stroke considerably increased miR-146a density in the subventricular zone (SVZ, 19 ± 1 vs 6 ± 0.1 area/mm2 in non-MCAo group, p<0.05, n=4/group) and corpus callosum (24 ± 3 vs 8±1 area/mm2 in non-MCAo group) of the ischemic hemisphere. Quantitative RT-PCR also demonstrated a marked upregulation of miR-146a transcript in ischemic NPCs (8.5 fold), suggesting an important role in stroke-induced neurogenesis and oligodendrogenesis. To test its biological function, we over-expressed miR-146a in neural progenitor cells by transfection of miR-146a mimics using nucleofector and found that elevation of miR-146a significantly increased the percentage of Tuj1+ neuroblasts (5 ± 0.3 vs 1 ± 0.2%, p<0.05, n=6/group) and O4+ OPCs (10 ± 1 vs 4 ± 0.4%, p<0.05). Moreover, over-expression of miR-146a in primary cultured OPCs significantly increased several myelin proteins including MBP and PLP, and decreased levels of OPC marker proteins including PDGFRα and NG2, whereas attenuation of miR-146a by siRNA against miR-146a suppressed myelin proteins and augmented OPC marker proteins. Furthermore, miR-146a levels in the OPCs were inversely related to IRAK1 proteins, one of miR-146a target genes. Attenuation of IRAK1 in OPCs substantially increased myelin proteins, indicating that miR-146a mediates oligodendrocyte maturation via targeting IRAK1. Conclusion: Our data provide new insight into molecular mechanisms underlying stroke-induced neurogenesis and oligodendrogenesis by revealing a novel role of miR-146a in NPCs and OPCs, which has potential to be used as a new therapy for neurorecovery after stroke.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1428 ◽  
Author(s):  
Sebastian Igelmann ◽  
Heidi Neubauer ◽  
Gerardo Ferbeyre

The Signal Transducer and Activator of Transcription (STAT)3 and 5 proteins are activated by many cytokine receptors to regulate specific gene expression and mitochondrial functions. Their role in cancer is largely context-dependent as they can both act as oncogenes and tumor suppressors. We review here the role of STAT3/5 activation in solid cancers and summarize their association with survival in cancer patients. The molecular mechanisms that underpin the oncogenic activity of STAT3/5 signaling include the regulation of genes that control cell cycle and cell death. However, recent advances also highlight the critical role of STAT3/5 target genes mediating inflammation and stemness. In addition, STAT3 mitochondrial functions are required for transformation. On the other hand, several tumor suppressor pathways act on or are activated by STAT3/5 signaling, including tyrosine phosphatases, the sumo ligase Protein Inhibitor of Activated STAT3 (PIAS3), the E3 ubiquitin ligase TATA Element Modulatory Factor/Androgen Receptor-Coactivator of 160 kDa (TMF/ARA160), the miRNAs miR-124 and miR-1181, the Protein of alternative reading frame 19 (p19ARF)/p53 pathway and the Suppressor of Cytokine Signaling 1 and 3 (SOCS1/3) proteins. Cancer mutations and epigenetic alterations may alter the balance between pro-oncogenic and tumor suppressor activities associated with STAT3/5 signaling, explaining their context-dependent association with tumor progression both in human cancers and animal models.


2003 ◽  
Vol 31 (1) ◽  
pp. 292-297 ◽  
Author(s):  
K.U. Birkenkamp ◽  
P.J. Coffer

Recently, the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors has been identified as direct targets of phosphoinositide 3-kinase-mediated signal transduction. The AFX (acute-lymphocytic-leukaemia-1 fused gene from chromosome X), FKHR (Forkhead in rhabdomyosarcoma) and FKHR-L1 (FKHR-like 1) transcription factors are directly phosphorylated by protein kinase B, resulting in nuclear export and inhibition of transcription. This signalling pathway was first identified in the nematode worm Caenorhabditis elegans, where it has a role in regulation of the life span of the organism. Studies have shown that this evolutionarily conserved signalling module has a role in regulation of both cell-cycle progression and cell survival in higher eukaryotes. These effects are co-ordinated by FOXO-mediated induction of a variety of specific target genes that are only now beginning to be identified. Interestingly, FOXO transcription factors appear to be able to regulate transcription through both DNA-binding-dependent and -independent mechanisms. Our understanding of the regulation of FOXO activity, and defining specific transcriptional targets, may provide clues to the molecular mechanisms controlling cell fate decisions to divide, differentiate or die.


Author(s):  
Simon Roux ◽  
Blair G. Paul ◽  
Sarah C. Bagby ◽  
Michelle A. Allen ◽  
Graeme Attwood ◽  
...  

AbstractChanges in the sequence of an organism’s genome, i.e. mutations, are the raw material of evolution1. The frequency and location of mutations can be constrained by specific molecular mechanisms, such as Diversity-generating retroelements (DGRs)2–4. DGRs introduce mutations in specific target genes, and were characterized from several cultivated bacteria and bacteriophages2. Whilst a larger diversity of DGR loci has been identified in genomic data from environmental samples, i.e. metagenomes, the ecological role of these DGRs and their associated evolutionary drivers remain poorly understood5–7. Here we built and analyzed an extensive dataset of >30,000 metagenome-derived DGRs, and determine that DGRs have a single evolutionary origin and a universal bias towards adenine mutations. We further identified six major lineages of DGRs, each associated with a specific ecological niche defined as a genome type, i.e. whether the DGR is encoded on a viral or cellular genome, a limited set of taxa and environments, and a distinct type of target. Finally, we leverage read mapping and metagenomic time series to demonstrate that DGRs are consistently and broadly active, and responsible for >10% of all amino acid changes in some organisms at a conservative estimate. Overall, these results highlight the strong constraints under which DGRs diversify and expand, and elucidate several distinct roles these elements play in natural communities and in shaping microbial community structure and function in our environment.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Sreenivasulu Kialri ◽  
Binxia Yang ◽  
Deborah McCall ◽  
Sanjay Misra

The exact molecular mechanisms involved in hemodialysis arteriovenous fistula (AVF) failure caused by venous neointimal hyperplasia (VNH) are not clear. It has been observed that there is an accumulation of extracellular matrix and up regulation of pro-fibrotic genes accompanied with presence of fibroblasts, smooth muscle cells, and inflammatory cells in the stenotic veins. Previous studies have demonstrated that adventitial and medial fibroblasts have a pivotal role(s) in VNH formation. MicroRNA-21 (miR-21) contributes to fibroblast to myofibroblast differentiation and dysregulation of miR-21 plays a pathological role in failure of coronary artery bypass grafts. The aim of the present study was to determine the role of miR-21 in VNH associated with AVF. We assessed miR-21 expression using qRT-PCR in the outflow veins of AVFs compared to control (contralateral jugular veins) veins in the C57BL/6J mice with chronic kidney disease (CKD). MiR-21 expression was upregulated accompanied with down regulation of miR-21 target genes; PPAR-α, PTEN and TIMP-3. In addition, gene expression of fibroblast specific protein (FSP) -1, TGF (transforming growth factor) -β1, matrix metalloproteinases (MMP)-2, -9, collagen-I, and IV were significantly increased at day 7 after AVF creation. Immunohistochemistry revealed that there was a significant increase in proliferating cell index (Ki-67) and fibroblast index (FSP-1) in the outflow veins of AVFs. Hypoxia has been shown to increase fibroblast to myofibroblast differentiation and this is predicted to be an early step in VNH formation. Therefore we assessed miR-21 expression in hypoxic (1%O 2 ) mouse pulmonary vein fibroblasts compared to normoxic cells in vitro and it was found that miR-21and TGF-β1 significantly elevated with down regulation of miR-21 target genes PTEN and TIMP-3. Furthermore, miR-21 knockdown in hypoxic fibroblasts attenuated TGF-β1 expression with a significant upregulation of genes targeted by miR-21 compared to controls. Together these results indicate that upregulation of miR-21 expression may result in fibroblast to myofibroblast differentiation resulting in VNH formation.


Author(s):  
Е.А. Трифонова ◽  
А.В. Марков ◽  
И.А. Степанов ◽  
Е.В. Ижойкина ◽  
В.А. Степанов

Многочисленными исследованиями показано, что ключевые патогенетические механизмы больших акушерских синдромов (БАС) связаны с нарушением процессов плацентации. В связи с чем, целью нашей работы являлся поиск новых генетических маркеров этих гестационных осложнений на основе интегративного анализа данных, полученных при полногеномном экспрессионном профилировании плацентарной ткани. Нами выявлено 64 гена, транскрипционная активность которых статистически значимо изменяется как минимум при двух заболеваниях группы БАС. Показана значимая роль нарушения межклеточных взаимодействий и регуляции модификации белков в плацентарной ткани при развитии изученных патологических состояний беременности, идентифицированы мастер-регуляторы, рассматриваемые в качестве потенциальных терапевтических мишеней. It is shown that the key pathogenetic mechanisms of grate obstetric syndromes (GOS) are associated with impaired placentation. The aim of the work was to search for new genetic markers of GOS on the basis of integrative analysis of genome-wide expression profiling data. We found that the transcriptional activity of 64 genes changes in at least two GOS diseases. The significant role of disturbance of intercellular interactions and regulation of protein modification in placental tissue during the development of the pregnancy complications is shown. Master regulators that are potential therapeutic targets have been identified.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1032-1032
Author(s):  
Maritza Lienlaf ◽  
Patricio Perez-Villarroel ◽  
Fengdong Cheng ◽  
Calvin K. Lee ◽  
Jorge Canales ◽  
...  

Abstract Histone deacetylases (HDACs), originally discovered as histone modifiers are now proposed as important regulators of non-chromatin related processes, including the regulation of cellular pathways involved in the production of anti- and pro-inflammatory cytokines and the subsequent function of antigen-presenting cells (APCs). We have recently identified HDAC6 as a positive regulatory factor in the production of IL-10. However, the participation of this HDAC in other immune related cellular processes remains unknown. In this work we present evidence of the important role of HDAC6 in the modulation of the JAK/STAT pathway through the IL-6 regulation. We generated knockdown cell lines of HDAC6 (HDAC6KD) and non-target (NT) cells as a control in RAW264.7 murine macrophages using lentiviral shRNA. Two HADC6KD and two NT cell lines were treated with LPS or were left untreated and then analyzed by microarray. In HDAC6KD cells we found 1542 genes were down-regulated and 775 up-regulated in HDAC6KD cells. Their ontology distribution revealed significant changes in immune-related and apoptosis/cell cycle control genes. Importantly, we observed that most STAT3 and SP1 target genes were down regulated in HDAC6KD cells, suggesting the participation of HDAC6 in the regulation of these two transcription factors. Further analysis evidenced that the phosphorylation of STAT3 and the acetylation of Sp1 were diminished in HDAC6KD cells when compared against control cells. Chromatin immuneprecipitacion (CHIP) assays indicate that this particular effect of abrogation of HDAC6 involved histone modifications at the IL-6 promoter level, and more importantly, the recruitment of STAT3 and Sp1 to the IL-6 promoter was abrogated. Then, we analyzed the relevance of these findings by studying the tolerogenic JAK/STAT signaling pathway, which is known to be activated by IL-6 and critical in the final outcome of APCs in response to stimuli. Our observations included a complete abrogation in the phosphorylation of JAK2 and STAT3 proteins in HDAC6KD cells in response to LPS, which was reverted when these cells were treated with exogenous IL-6. Our final results demonstrate a critical role of HDAC6 in the modulation of IL-6 and the potential role of HDAC6 in the regulation of the JAK/STAT3 pathway. In addition HDAC6 is a regulator of SP1 and STAT3 target genes. These findings provide insight into the molecular mechanisms controlling the immunogenicity of APCs, supporting the use of HDAC6 inhibitors to enhance immune activation, and positioning HDAC6 as a potential therapeutic target. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document