scholarly journals Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion

2016 ◽  
Vol 113 (30) ◽  
pp. E4338-E4347 ◽  
Author(s):  
Ashish Juvekar ◽  
Hai Hu ◽  
Sina Yadegarynia ◽  
Costas A. Lyssiotis ◽  
Soumya Ullas ◽  
...  

We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1f/fp53f/f), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 948-948
Author(s):  
Miguel Quijada Álamo ◽  
María Hernández-Sánchez ◽  
José Luis Ordóñez ◽  
Verónica Alonso Pérez ◽  
Ana E. Rodriguez ◽  
...  

Abstract Chromosome 11q22.3 deletion (del(11q)) is one of the most common cytogenetic alterations in CLL and usually involves both ATM and BIRC3 genes. Concomitant mutations in ATM and/or BIRC3 in the remaining allele have been associated with poor survival. Despite the encouraging efficacy of novel agents targeting BCR and BCL2 pathways, del(11q) patients still have an inferior outcome and the development of resistance to these drugs has been increasingly reported. We therefore investigated the functional impact of del(11q) together with loss-of-function mutations in ATM and/or BIRC3 and whether CLLs harboring these alterations could benefit from novel combinatorial therapies. To address these questions, we used the CRISPR/Cas9 system to generate an isogenic CLL cell line to model del(11q) derived from HG3 cells by introducing two guide RNAs targeting the 11q22.1 and 11q23.3 regions. The presence of a monoallelic deletion (size ~17 Mb) was confirmed in 100% of the cells by FISH. Truncating mutations in ATM and/or BIRC3 were introduced in the remaining allele, generating HG3 del(11q) ATMKO, del(11q) BIRC3KO and del(11q) ATMKOBIRC3KO (three clones per condition). In addition, single ATMKO and BIRC3KO mutations, or the combination of both, were introduced into both HG3 and MEC1 CLL-derived cells (three clones per condition). Functional in vitro studies revealed that del(11q) BIRC3KO cells had increased growth rates compared to del(11q) BIRC3WT clones (P<0.01). Similar results were observed in HG3 and MEC1 BIRC3KO cells (P<0.01; P<0.05). Moreover, biallelic inactivation of BIRC3 in del(11q) cells resulted in cytoplasmic stabilization of NF-kB-inducing kinase (NIK), leading to higher nuclear NF-kB2 (p52) activation (P<0.01) as measured by ELISA. In parallel, we analyzed the DNA damage response (DDR) of these cells, and showed that del(11q) ATMKO cells displayed reduced pH2AX levels (P<0.001) and an accumulation of unrepaired double strand breaks (DSB) (P<0.001) after irradiation, as determined by comet assays. Consistently, in vivo subcutaneous xenografts showed that HG3 ATMKOBIRC3KO tumors presented proliferative advantage, higher p52 levels and greater genomic and mitotic instability than HG3WT tumors, indicating a more aggressive phenotype. We next assessed the response of these CRISPR/Cas9-edited CLL cell lines to therapy. Of note, only TP53KO clones (also generated by CRISPR/Cas9), and not del(11q) BIRC3KO cells, showed resistance to fludarabine (mean IC50 16.9 uM vs. 4.1 uM; mean apoptotic cells (5 uM) 5.5% vs. 22.5%; P<0.05). Moreover, del(11q) cells were slightly more resistant to ibrutinib (IBRU) treatment compared to WT cells (mean IC50 10 uM vs. 3.7 uM; P<0.05). Interestingly, exploiting the DDR deficiencies underlying del(11q) by targeting the single strand break repair pathway with the PARP inhibitor olaparib (OLA), del(11q) ATMKO cells were not able to proliferate even 12 days after treatment (3 uM), independently of the mutational status of BIRC3 (P<0.01). In vivo intravenous HG3-derived xenografts (N=20) showed that OLA (100 mg/kg) reduced hCD45+ cells in the peripheral blood (P<0.01) and significantly improved survival of del(11q) ATMKOBIRC3KO xenografted mice (P<0.01). Moreover, IBRU potentiated the effects of OLA in cell viability (72h) in all the del(11q) clones (combination indexes 0.69-0.85), leading to an increased necrotic cell death, as shown by annexin V/PI staining (P<0.001) and HMGB1 release. Remarkably, we found that IBRU caused downregulation of the DNA repair protein RAD51, leading to impaired RAD51 foci formation in DSB lesions (P<0.01). Consistently, IBRU (1 uM) reduced the homologous recombination (HR) repair efficiency in HG3 cells (P=0.001), as determined by an HR-reporter construct. This IBRU-dependent impairment of HR repair could explain the synergistic effects with OLA by synthetic lethality. In conclusion, we demonstrate that del(11q) CLL cells with biallelic inactivation of BIRC3 and ATM show enhanced proliferation through activation of the non-canonical NF-kB pathway, and accumulation of DNA damage contributing to genomic instability. We show that these defects on the DDR can be therapeutically targeted by synthetic lethal approaches using PARP inhibitors either alone or in combination with BCR inhibitors, providing a rationale for the study of this combination in relapsed del(11q) CLL patients. PI15/01471 SA085U16 JCyL-MQ FEHH-MH Disclosures García-Tuñón: Novartis: Research Funding. Wu:Neon Therapeutics: Equity Ownership.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi163-vi164
Author(s):  
Olga Kim ◽  
Madison Butler ◽  
Ying Pang ◽  
Guangyang Yu ◽  
Mythili Merchant ◽  
...  

Abstract BACKGROUND Glioblastoma is an aggressive brain tumor with high mortality. The development of new therapies is critical for improving patient outcomes. LMP400, a novel topoisomerase I (TOP1) inhibitor, traps TOP1 cleavage complexes, thereby generating DNA damage. Poly(ADP-ribose) polymerase (PARP) is involved in DNA repair responses triggered by TOP1 inhibition. Niraparib is a potent PARP inhibitor that can cross the blood-brain barrier. Loss of phosphatase and tensin homolog (PTEN) occurs in 40% of GBM patients and is known to promote DNA damage repair deficiency. Here, we hypothesize that PTEN loss presents a vulnerability to a combined induction of DNA damage and inhibition of repair mechanisms. METHODS Human glioblastoma cells (U251, SNB-75, SF-295, LN18) and patient-derived glioblastoma stem cells (GSC923 and GSC827) were treated with LMP400 and/or Niraparib. Cell viability and apoptosis were examined using Celigo image cytometer and Annexin V/PI assay at 72h after treatment. Single clones after PTEN knockdown using shRNA were isolated after puromycin selection. For planned studies of PTEN knockout, sgRNA plasmids targeting PTEN will be transiently transfected and GFP-positive single KO clones will be isolated. PTEN will be restored in PTEN-null cells using lentiviral transduction. RESULTS CRISPR-Cas9 KO screening in GSC923 cells suggests that LMP400 is unlikely a substrate for ABC transporters. LMP400 and Niraparib synergistically induced cytotoxic effects in U251, SF-295, GSC923, GSC827 cells lacking PTEN expression. Combined LMP400/Niraparib led to increased expression of gamma-H2AX, cleaved caspase 3 and PARP, indicative of enhanced DNA damage and cell death. CONCLUSION LMP400 and Niraparib act synergistically to target PTEN-deficient glioblastoma by inducing DNA damage and cell death. These results will be further verified in isogenic cells in vitro as well as in vivo in a mouse model driven by PTEN deletion which would strongly support a novel therapeutic strategy in a subset of glioblastoma with PTEN loss.


Author(s):  
Feifei Wang ◽  
Odjo G. Gouttia ◽  
Ling Wang ◽  
Aimin Peng

First-line treatments for oral cancer typically include surgery, radiation, and in some cases, chemotherapy. Radiation and oral cancer chemotherapeutics confer cytotoxicity largely by inducing DNA damage, underscoring the importance of the cellular DNA damage repair and response pathways in cancer therapy. However, tumor recurrence and acquired resistance, following the initial response to treatment, remains as a major clinical challenge. By analyzing oral tumor cells derived from the primary and recurrent tumors of the same patient, our study revealed upregulated PARP1 expression in the recurrent tumor cells. Cisplatin and 5-fluorouracil treatment further augmented PARP1 expression in the recurrent, but not the primary, tumor cells. Post-treatment upregulation of PARP1 was dependent on the catalytic activities of PARP and CDK7. Consistent with the established function of PARP1 in DNA repair, we showed that overexpression of PARP1 rendered the primary tumor cells highly resistant to DNA damage treatment. Conversely, PARP inhibition partially reversed the treatment resistance in the recurrent tumor cells; combinatorial treatment using a PARP inhibitor and cisplatin/5-fluorouracil significantly sensitized the tumor response in vivo. Taken together, we reported here PARP1 upregulation as a clinically relevant mechanism involved in oral cancer recurrence, and suggested the clinical benefit of PARP inhibitors, currently approved for the treatment of several other types of cancer, in oral cancer.


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1631-1640 ◽  
Author(s):  
Janet R Donaldson ◽  
Charmain T Courcelle ◽  
Justin Courcelle

Abstract Ultraviolet light induces DNA lesions that block the progression of the replication machinery. Several models speculate that the resumption of replication following disruption by UV-induced DNA damage requires regression of the nascent DNA or migration of the replication machinery away from the blocking lesion to allow repair or bypass of the lesion to occur. Both RuvAB and RecG catalyze branch migration of three- and four-stranded DNA junctions in vitro and are proposed to catalyze fork regression in vivo. To examine this possibility, we characterized the recovery of DNA synthesis in ruvAB and recG mutants. We found that in the absence of either RecG or RuvAB, arrested replication forks are maintained and DNA synthesis is resumed with kinetics that are similar to those in wild-type cells. The data presented here indicate that RecG- or RuvAB-catalyzed fork regression is not essential for DNA synthesis to resume following arrest by UV-induced DNA damage in vivo.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jessica Buck ◽  
Patrick J. C. Dyer ◽  
Hilary Hii ◽  
Brooke Carline ◽  
Mani Kuchibhotla ◽  
...  

Medulloblastoma is the most common malignant childhood brain tumor, and 5-year overall survival rates are as low as 40% depending on molecular subtype, with new therapies critically important. As radiotherapy and chemotherapy act through the induction of DNA damage, the sensitization of cancer cells through the inhibition of DNA damage repair pathways is a potential therapeutic strategy. The poly-(ADP-ribose) polymerase (PARP) inhibitor veliparib was assessed for its ability to augment the cellular response to radiation-induced DNA damage in human medulloblastoma cells. DNA repair following irradiation was assessed using the alkaline comet assay, with veliparib inhibiting the rate of DNA repair. Veliparib treatment also increased the number of γH2AX foci in cells treated with radiation, and analysis of downstream pathways indicated persistent activation of the DNA damage response pathway. Clonogenicity assays demonstrated that veliparib effectively inhibited the colony-forming capacity of medulloblastoma cells, both as a single agent and in combination with irradiation. These data were then validated in vivo using an orthotopic implant model of medulloblastoma. Mice harboring intracranial D425 medulloblastoma xenografts were treated with vehicle, veliparib, 18 Gy multifractionated craniospinal irradiation (CSI), or veliparib combined with 18 Gy CSI. Animals treated with combination therapy exhibited reduced tumor growth rates concomitant with increased intra-tumoral apoptosis observed by immunohistochemistry. Kaplan–Meier analyses revealed a statistically significant increase in survival with combination therapy compared to CSI alone. In summary, PARP inhibition enhanced radiation-induced cytotoxicity of medulloblastoma cells; thus, veliparib or other brain-penetrant PARP inhibitors are potential radiosensitizing agents for the treatment of medulloblastoma.


Gut ◽  
2020 ◽  
pp. gutjnl-2019-319970 ◽  
Author(s):  
Johann Gout ◽  
Lukas Perkhofer ◽  
Mareen Morawe ◽  
Frank Arnold ◽  
Michaela Ihle ◽  
...  

ObjectiveATM serine/threonine kinase (ATM) is the most frequently mutated DNA damage response gene, involved in homologous recombination (HR), in pancreatic ductal adenocarcinoma (PDAC).DesignCombinational synergy screening was performed to endeavour a genotype-tailored targeted therapy.ResultsSynergy was found on inhibition of PARP, ATR and DNA-PKcs (PAD) leading to synthetic lethality in ATM-deficient murine and human PDAC. Mechanistically, PAD-induced PARP trapping, replication fork stalling and mitosis defects leading to P53-mediated apoptosis. Most importantly, chemical inhibition of ATM sensitises human PDAC cells toward PAD with long-term tumour control in vivo. Finally, we anticipated and elucidated PARP inhibitor resistance within the ATM-null background via whole exome sequencing. Arising cells were aneuploid, underwent epithelial-mesenchymal-transition and acquired multidrug resistance (MDR) due to upregulation of drug transporters and a bypass within the DNA repair machinery. These functional observations were mirrored in copy number variations affecting a region on chromosome 5 comprising several of the upregulated MDR genes. Using these findings, we ultimately propose alternative strategies to overcome the resistance.ConclusionAnalysis of the molecular susceptibilities triggered by ATM deficiency in PDAC allow elaboration of an efficient mutation-specific combinational therapeutic approach that can be also implemented in a genotype-independent manner by ATM inhibition.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Katherine S. Yang ◽  
Rainer H. Kohler ◽  
Matthieu Landon ◽  
Randy Giedt ◽  
Ralph Weissleder

2021 ◽  
Author(s):  
Umar Khalid ◽  
Milena Simovic ◽  
Murat Iskar ◽  
John KL Wong ◽  
Rithu Kumar ◽  
...  

ABSTRACTChromothripsis is a form of genomic instability characterized by the occurrence of tens to hundreds of clustered DNA double-strand breaks in a one-off catastrophic event. Rearrangements associated with chromothripsis are detectable in numerous tumor entities and linked with poor prognosis in some of these, such as Sonic Hedgehog medulloblastoma, neuroblastoma and osteosarcoma. Hence, there is a need for therapeutic strategies eliminating tumor cells with chromothripsis. Defects in DNA double-strand break repair, and in particular homologous recombination repair, have been linked with chromothripsis. Targeting DNA repair deficiencies by synthetic lethality approaches, we performed a synergy screen using drug libraries (n = 375 compounds, 15 models) combined with either a PARP inhibitor or cisplatin. This revealed a synergistic interaction between the HDAC inhibitor romidepsin and PARP inhibition. Functional assays, transcriptome analyses, and in vivo validation in patient-derived xenograft mouse models confirmed the efficacy of the combinatorial treatment.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252587
Author(s):  
Yuriko Inomata ◽  
Takuya Abe ◽  
Masataka Tsuda ◽  
Shunichi Takeda ◽  
Kouji Hirota

Living organisms are continuously under threat from a vast array of DNA-damaging agents, which impact genome DNA. DNA replication machinery stalls at damaged template DNA. The stalled replication fork is restarted via bypass replication by translesion DNA-synthesis polymerases, including the Y-family polymerases Polη, Polι, and Polκ, which possess the ability to incorporate nucleotides opposite the damaged template. To investigate the division of labor among these polymerases in vivo, we generated POLη−/−, POLι−/−, POLκ−/−, double knockout (KO), and triple knockout (TKO) mutants in all combinations from human TK6 cells. TKO cells exhibited a hypersensitivity to ultraviolet (UV), cisplatin (CDDP), and methyl methanesulfonate (MMS), confirming the pivotal role played by these polymerases in bypass replication of damaged template DNA. POLη−/− cells, but not POLι−/− or POLκ−/− cells, showed a strong sensitivity to UV and CDDP, while TKO cells showed a slightly higher sensitivity to UV and CDDP than did POLη−/− cells. On the other hand, TKO cells, but not all single KO cells, exhibited a significantly higher sensitivity to MMS than did wild-type cells. Consistently, DNA-fiber assay revealed that Polη plays a crucial role in bypassing lesions caused by UV-mimetic agent 4-nitroquinoline-1-oxide and CDDP, while all three polymerases play complementary roles in bypassing MMS-induced damage. Our findings indicate that the three Y-family polymerases play distinctly different roles in bypass replication, according to the type of DNA damage generated on the template strand.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1835-1835
Author(s):  
Angelo Agathaggelou ◽  
Olga Murina ◽  
Andrew P Jackson ◽  
Paul Moss ◽  
Shankara Paneesha ◽  
...  

Abstract The therapeutic exploitation of molecular defects within the DNA damage response (DDR) in tumour cells has become an important treatment paradigm. 'Synthetic lethality' relies on pharmacological inhibition of pathways upon which DDR-deficient tumour cells have become dependent for their survival. This induces an intolerable level of unrepaired DNA damage in the tumour cells resulting in cell death, whilst sparing DDR-proficient normal cells Deletion of 13q14 is a frequent, early event in the pathogenesis of CLL. Alongside well-described tumour suppressor genes this genomic region also encompasses the DDR gene, RNASEH2B, which encodes a subunit of the heterotrimeric enzymatic complex, RNaseH2. This complex is a principal component of ribonucleotide excision repair (RER), a DDR pathway that removes ribonucleotides incorporated into DNA by error prone DNA repair polymerases. If unremoved, these DNA-incorporated ribonucleotides lead to DNA damage, chromosome instability and mutagenesis (Reijns et al, Cell. 2012;149:1008). We recently reported a synthetically lethal interaction between the functional loss of RNaseH2 enzymatic complex and PARP inhibition (Zimmerman et al, Nature 2018, 559:285). We observed that inactivation of any of the three RNAseH2 subunits (A,B,C) leads to loss of enzymatic activity of this complex and also that primary CLL tumours with 13q14 deletion involving the RNASEH2B locus are sensitive to PARP inhibitors (PARPi) in vitro. In light of these preliminary observations, we addressed the following questions: a) Do monoalleic and biallelic RNASEH2B deletions have equal consequences for RNAseH2 enzymatic activity and sensitivity to PARP inhibition in CLL? d) Can loss of RNAseH2 activity be caused by an alternative mechanism, such as mutations in RNASEH2B? c) Can the PARPi sensitivity of RNaseH2-deficient CLLs be demonstrated in vivo, in patient-derived xenografts? d) Is PARP inhibition an option for RNAseH2 deficient tumours with limited response to other treatments? Analysis of 100 primary CLL tumours through a combination of multiplex ligation-dependent probe amplification (MLPA), CGH microarrays and Sanger sequencing identified 29 tumours with monoallelic and 14 with biallelic RNASEH2B deletions. None of the analysed tumours had mutations in RNASEH2B. Increased levels of genomic ribonucleotides were confirmed in all RNASEH2B deleted tumours by two complementary methods: alkaline gel electrophoresis and DNA nick translation. We found that the RNaseH2 enzymatic defect and sensitivity to PARP inhibition were evident in all RNASEH2B deleted tumours, but were more profound in those harbouring biallelic deletion compared to tumours that have lost only one RNASEH2B allele. Furthermore, sensitivity to PARP inhibitors was dependent on PARP-trapping capacity and therefore cytotoxicity was most prominent in response to PARP-inhibitors with a potent PARP trapping capacity such as talazoparib. In vivo experiments revealed similar trends, with CLL xenografts derived from tumours with biallelic RNASEH2B deletion being differentially sensitive to Talazoparib. Notably, the PARP inhibition sensitivity of RNAseH2-deficient primary CLLs was independent of patients' response to different treatments. In summary, we conclude that the RNASEH2B loss associated with 13q14 deletion represents a frequent cause of RNaseH2 enzymatic defect that renders primary CLL tumours sensitive to PARP-trapping inhibitors. Our findings expand the range of molecular defects in CLL that are amenable to treatment with clinically applicable PARP inhibitors and may have implications for the management of patients with limited response to other treatments. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document