scholarly journals Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease

2016 ◽  
Vol 113 (3) ◽  
pp. 746-750 ◽  
Author(s):  
Muzamil Majid Khan ◽  
Danilo Lustrino ◽  
Willian A. Silveira ◽  
Franziska Wild ◽  
Tatjana Straka ◽  
...  

The distribution and function of sympathetic innervation in skeletal muscle have largely remained elusive. Here we demonstrate that sympathetic neurons make close contact with neuromuscular junctions and form a network in skeletal muscle that may functionally couple different targets including blood vessels, motor neurons, and muscle fibers. Direct stimulation of sympathetic neurons led to activation of muscle postsynaptic β2-adrenoreceptor (ADRB2), cAMP production, and import of the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PPARGC1A) into myonuclei. Electrophysiological and morphological deficits of neuromuscular junctions upon sympathectomy and in myasthenic mice were rescued by sympathicomimetic treatment. In conclusion, this study identifies the neuromuscular junction as a target of the sympathetic nervous system and shows that sympathetic input is crucial for synapse maintenance and function.

Author(s):  
Dalia Medhat ◽  
Mona A. El-Bana ◽  
Sherien M. El-Daly ◽  
Magdi N. Ashour ◽  
Tahany R. Elias ◽  
...  

Abstract Objective To evaluate the influence of irisin on the experimental paradigm of non-alcoholic fatty liver (NAFL) as a part of MetS cluster. Methods Forty male albino rats were divided into four groups; normal control, standard diet + irisin, high carbohydrate and fat diet (HCHF), and HCHF + irisin. After the experimental period, levels of fasting blood sugar (FBS), insulin, lipid profile, kidney functions, salusin-alpha (Sal-α), adropin, and retinol-binding protein-4 (RBP-4) were evaluated. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) expression in skeletal muscle was evaluated by quantitative real-time PCR. Aorta, liver, pancreas, and skeletal muscle tissue samples were prepared for histopathological examination. Results Rats administrated HCHF showed elevated levels of FBS, lipid profile, kidney functions, RBP-4, and downregulation of PGC-1α expression along with a decline in levels of insulin, Sal-α, and adropin while administration of irisin significantly attenuated these levels. Conclusions Irisin as based therapy could emerge as a new line of treatment against MetS and its related diseases.


Oncogene ◽  
2021 ◽  
Vol 40 (13) ◽  
pp. 2355-2366
Author(s):  
Laura C. A. Galbraith ◽  
Ernest Mui ◽  
Colin Nixon ◽  
Ann Hedley ◽  
David Strachan ◽  
...  

AbstractPeroxisome Proliferator-Activated Receptor Gamma (PPARG) is one of the three members of the PPAR family of transcription factors. Besides its roles in adipocyte differentiation and lipid metabolism, we recently demonstrated an association between PPARG and metastasis in prostate cancer. In this study a functional effect of PPARG on AKT serine/threonine kinase 3 (AKT3), which ultimately results in a more aggressive disease phenotype was identified. AKT3 has previously been shown to regulate PPARG co-activator 1 alpha (PGC1α) localisation and function through its action on chromosome maintenance region 1 (CRM1). AKT3 promotes PGC1α localisation to the nucleus through its inhibitory effects on CRM1, a known nuclear export protein. Collectively our results demonstrate how PPARG over-expression drives an increase in AKT3 levels, which in turn has the downstream effect of increasing PGC1α localisation within the nucleus, driving mitochondrial biogenesis. Furthermore, this increase in mitochondrial mass provides higher energetic output in the form of elevated ATP levels which may fuel the progression of the tumour cell through epithelial to mesenchymal transition (EMT) and ultimately metastasis.


PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Jaou-Chen Huang

Peroxisome proliferator-activated receptorδ(PPARδ, also known as PPARβ) has ubiquitous distribution and extensive biological functions. The reproductive function of PPARδwas first revealed in the uterus at the implantation site. Since then, PPARδand its ligand have been discovered in all reproductive tissues, including the gametes and the preimplantation embryos. PPARδin preimplantation embryos is normally activated by oviduct-derived PPARδligand. PPARδactivation is associated with an increase in embryonic cell proliferation and a decrease in programmed cell death (apoptosis). On the other hand, the role of PPARδand its ligand in gamete formation and function is less well understood. This review will summarize the reproductive functions of PPARδand project its potential applications in assisted reproductive technology.


2017 ◽  
Vol 312 (5) ◽  
pp. E394-E406 ◽  
Author(s):  
Samuel Lee ◽  
Teresa C. Leone ◽  
Lisa Rogosa ◽  
John Rumsey ◽  
Julio Ayala ◽  
...  

Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and -1β serve as master transcriptional regulators of muscle mitochondrial functional capacity and are capable of enhancing muscle endurance when overexpressed in mice. We sought to determine whether muscle-specific transgenic overexpression of PGC-1β affects the detraining response following endurance training. First, we established and validated a mouse exercise-training-detraining protocol. Second, using multiple physiological and gene expression end points, we found that PGC-1β overexpression in skeletal muscle of sedentary mice fully recapitulated the training response. Lastly, PGC-1β overexpression during the detraining period resulted in partial prevention of the detraining response. Specifically, an increase in the plateau at which O2 uptake (V̇o2) did not change from baseline with increasing treadmill speed [peak V̇o2 (ΔV̇o2max)] was maintained in trained mice with PGC-1β overexpression in muscle 6 wk after cessation of training. However, other detraining responses, including changes in running performance and in situ half relaxation time (a measure of contractility), were not affected by PGC-1β overexpression. We conclude that while activation of muscle PGC-1β is sufficient to drive the complete endurance phenotype in sedentary mice, it only partially prevents the detraining response following exercise training, suggesting that the process of endurance detraining involves mechanisms beyond the reversal of muscle autonomous mechanisms involved in endurance fitness. In addition, the protocol described here should be useful for assessing early-stage proof-of-concept interventions in preclinical models of muscle disuse atrophy.


2015 ◽  
Vol 308 (9) ◽  
pp. C710-C719 ◽  
Author(s):  
Anna Vainshtein ◽  
Liam D. Tryon ◽  
Marion Pauly ◽  
David A. Hood

Regular exercise leads to systemic metabolic benefits, which require remodeling of energy resources in skeletal muscle. During acute exercise, the increase in energy demands initiate mitochondrial biogenesis, orchestrated by the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Much less is known about the degradation of mitochondria following exercise, although new evidence implicates a cellular recycling mechanism, autophagy/mitophagy, in exercise-induced adaptations. How mitophagy is activated and what role PGC-1α plays in this process during exercise have yet to be evaluated. Thus we investigated autophagy/mitophagy in muscle immediately following an acute bout of exercise or 90 min following exercise in wild-type (WT) and PGC-1α knockout (KO) animals. Deletion of PGC-1α resulted in a 40% decrease in mitochondrial content, as well as a 25% decline in running performance, which was accompanied by severe acidosis in KO animals, indicating metabolic distress. Exercise induced significant increases in gene transcripts of various mitochondrial (e.g., cytochrome oxidase subunit IV and mitochondrial transcription factor A) and autophagy-related (e.g., p62 and light chain 3) genes in WT, but not KO, animals. Exercise also resulted in enhanced targeting of mitochondria for mitophagy, as well as increased autophagy and mitophagy flux, in WT animals. This effect was attenuated in the absence of PGC-1α. We also identified Niemann-Pick C1, a transmembrane protein involved in lysosomal lipid trafficking, as a target of PGC-1α that is induced with exercise. These results suggest that mitochondrial turnover is increased following exercise and that this effect is at least in part coordinated by PGC-1α. Anna Vainshtein received the AJP-Cell 2015 Paper of the Year award. Listen to a podcast with Anna Vainshtein and coauthor David A. Hood at http://ajpcell.podbean.com/e/ajp-cell-paper-of-the-year-2015-award-podcast/ .


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Sagartirtha Sarkar ◽  
Santanu Rana

Cardiac tissue engineering is an interdisciplinary field that engineers modulation of viable molecular milieu to restore, maintain or improve heart function. Myocardial workload (energy demand) and energy substrate availability (supply) are in continual flux to maintain specialized cellular processes, yet the heart has a limited capacity for substrate storage and utilization during pathophysiological conditions. Damage to heart muscle, acute or chronic, leads to dysregulation of cardiac metabolic processes associated with gradual but progressive decline in mitochondrial respiratory pathways resulting in diminished ATP production. The Peroxisome Proliferator Activated Receptor Alpha ( PPARα ) is known to regulate fatty acid to glucose metabolic balance as well as mitochondrial structural integrity. In this study, a non-canonical pathway of PPARα was analyzed by cardiomyocyte targeted PPARα overexpression during cardiac hypertrophy that showed significant downregulation in p53 acetylation as well as GSK3β activation levels. Targeted PPARα overexpression during hypertrophy resulted in restoration of mitochondrial structure and function along with significantly improved mitochondrial ROS generation and membrane potential. This is the first report of myocyte targeted PPARα overexpression in hypertrophied myocardium that results in an engineered heart with significantly improved function with increased muscle mitochondrial endurance and reduced mitochondrial apoptotic load, thus conferring a greater resistance to pathological stimuli within cardiac microenvironment.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Christian Werner ◽  
Stephan H Schirmer ◽  
Valerie Pavlickova ◽  
Michael Böhm ◽  
Ulrich Laufs

Objective: Peroxisome proliferator-activated receptor (PPAR)-α and -γ agonists modify lipid and glucose metabolism. The aim of the study was to characterize the effects of the dual PPAR-α/γ agonist aleglitazar on endothelial function, neoangiogenesis and arteriogenesis in mice and on human endothelial progenitor cells (EPC). Methods and Results: Male C57Bl/6 wild-type (WT, normal chow) and apolipoprotein E-deficient (apoE-/-) mice on Western-type diet (WTD) were treated with aleglitazar (10 mg/kg i.p.) or vehicle by daily injection. Hindlimb ischemia was induced by right femoral artery ligation (FAL). ApoE-/- mice on WTD treated with aleglitazar before FAL were characterized by an improvement of endothelial-dependent laser Doppler perfusion (right/left foot ratio 0.40±0.03) 1 week after FAL compared to controls (R/L foot ratio 0.24±0.01; p<0.001). Collateral-dependent perfusion measured under conditions of maximal vasodilatation 1 week after FAL using fluorescent microspheres was impaired in apoE-/- on WTD compared to WT mice (R/L leg ratio in WT 78±13 vs. apoE-/- 56±6; p<0.001) and was normalized by aleglitazar treatment. Neoangiogenesis was measured in-vivo by subcutaneously implanting discs covered with cell-impermeable filters. The vascularized area of the discs was quantified after 14 days by perfusion of the animals with space-filling fluorescent microspheres. Aleglitazar increased neoangiogenesis in WT mice by 178±18% compared to vehicle (p<0.05). Endothelium-dependent relaxation of aortic rings was impaired in apoE-/- mice on WTD for 6 weeks (relaxation to 52±5% of max. contraction) compared to WT animals (relaxation to 18±5% of max. contraction) (p<0.001). Aleglitazar treatment improved endothelial function (relaxation to 39±5% of max. contraction; p<0.05). In parallel, number and function of EPC were improved in mice. Studies in human EPC showed that 1) aleglitazar’s effects were mediated by both PPAR-α and -γ signalling and Akt and 2) migration and colony forming units were up-regulated by aleglitazar in cultivated EPC from CAD patients. Conclusion: The study provides evidence for beneficial effects of the dual PPAR-α/γ agonist aleglitazar on vascular function in addition to or mediated by its metabolic actions.


Sign in / Sign up

Export Citation Format

Share Document