scholarly journals Hedgehog signaling enables nutrition-responsive inhibition of an alternative morph in a polyphenic beetle

2016 ◽  
Vol 113 (21) ◽  
pp. 5982-5987 ◽  
Author(s):  
Teiya Kijimoto ◽  
Armin P. Moczek

The recruitment of modular developmental genetic components into new developmental contexts has been proposed as a central mechanism enabling the origin of novel traits and trait functions without necessitating the origin of novel pathways. Here, we investigate the function of the hedgehog (Hh) signaling pathway, a highly conserved pathway best understood for its role in patterning anterior/posterior (A/P) polarity of diverse traits, in the developmental evolution of beetle horns, an evolutionary novelty, and horn polyphenisms, a highly derived form of environment-responsive trait induction. We show that interactions among pathway members are conserved during development of Onthophagus horned beetles and have retained the ability to regulate A/P polarity in traditional appendages, such as legs. At the same time, the Hh signaling pathway has acquired a novel and highly unusual role in the nutrition-dependent regulation of horn polyphenisms by actively suppressing horn formation in low-nutrition males. Down-regulation of Hh signaling lifts this inhibition and returns a highly derived sigmoid horn body size allometry to its presumed ancestral, linear state. Our results suggest that recruitment of the Hh signaling pathway may have been a key step in the evolution of trait thresholds, such as those involved in horn polyphenisms and the corresponding origin of alternative phenotypes and complex allometries.

Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1203-1212 ◽  
Author(s):  
Katerina Nestoras ◽  
Helena Lee ◽  
Jym Mohler

We have undertaken a genetic analysis of new strong alleles of knot (kn). The original kn1 mutation causes an alteration of wing patterning similar to that associated with mutations of fused (fu), an apparent fusion of veins 3 and 4 in the wing. However, unlike fu, strong kn mutations do not affect embryonic segmentation and indicate that kn is not a component of a general Hh (Hedgehog)-signaling pathway. Instead we find that kn has a specific role in those cells of the wing imaginal disc that are subject to ptc-mediated Hh-signaling. Our results suggest a model for patterning the medial portion of the Drosophila wing, whereby the separation of veins 3 and 4 is maintained by kn activation in the intervening region in response to Hh-signaling across the adjacent anterior-posterior compartment boundary.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shiqin Li ◽  
Meng Wang ◽  
Yanghui Chen ◽  
Wei Wang ◽  
Junying Wu ◽  
...  

Germline stem cells (GSCs) are adult stem cells that are responsible for the production of gametes and include spermatogonial stem cells (SSCs) and ovarian germline stem cells (OGSCs). GSCs are located in a specialized microenvironment in the gonads called the niche. Many recent studies have demonstrated that multiple signals in the niche jointly regulate the proliferation and differentiation of GSCs, which is of significance for reproductive function. Previous studies have demonstrated that the hedgehog (Hh) signaling pathway participates in the proliferation and differentiation of various stem cells, including GSCs in Drosophila and male mammals. Furthermore, the discovery of mammalian OGSCs challenged the traditional opinion that the number of primary follicles is fixed in postnatal mammals, which is of significance for the reproductive ability of female mammals and the treatment of diseases related to germ cells. Meanwhile, it still remains to be determined whether the Hh signaling pathway participates in the regulation of the behavior of OGSCs. Herein, we review the current research on the role of the Hh signaling pathway in mediating the behavior of GSCs. In addition, some suggestions for future research are proposed.


2020 ◽  
Author(s):  
You Li ◽  
Guohui Xiong ◽  
Jun Tan ◽  
Shudi Wang ◽  
Ziyu Zhang ◽  
...  

Abstract The molecular mechanism that triggers polycystic ovary syndrome (PCOS) is mysterious. Abnormal development of ovarian granulosa cells(GCs) is one of the causes of PCOS. Herein, we carried out RNA-seq to detect the different gene expression levels in ovarian GCs between 3 patients with PCOS and 4 normal controls, and found that Hedgehog signaling pathway(Hh) members, Ihh and Ptch2 were abnormally highly expressed in the PCOS group. To further verify the above results, GCs from 22 patients with PCOS and 21 controls with normal ovulation were collected to perform the RT-PCR analysis. The qPCR results also indicated that the expression levels of other Hh signaling pathway downstream members, Ptch1, Gli1, and Gli2 in the PCOS group were significantly higher than those in the control group. These results suggest that abnormally activated Hh signaling pathway, especially Ihh signal, may have a profound influence on PCOS.


2018 ◽  
Vol 18 (1) ◽  
pp. 8-20 ◽  
Author(s):  
Ana Marija Skoda ◽  
Dora Simovic ◽  
Valentina Karin ◽  
Vedran Kardum ◽  
Semir Vranic ◽  
...  

The Hedgehog (Hh) signaling pathway was first identified in the common fruit fly. It is a highly conserved evolutionary pathway of signal transmission from the cell membrane to the nucleus. The Hh signaling pathway plays an important role in the embryonic development. It exerts its biological effects through a signaling cascade that culminates in a change of balance between activator and repressor forms of glioma-associated oncogene (Gli) transcription factors. The components of the Hh signaling pathway involved in the signaling transfer to the Gli transcription factors include Hedgehog ligands (Sonic Hh [SHh], Indian Hh [IHh], and Desert Hh [DHh]), Patched receptor (Ptch1, Ptch2), Smoothened receptor (Smo), Suppressor of fused homolog (Sufu), kinesin protein Kif7, protein kinase A (PKA), and cyclic adenosine monophosphate (cAMP). The activator form of Gli travels to the nucleus and stimulates the transcription of the target genes by binding to their promoters. The main target genes of the Hh signaling pathway are PTCH1, PTCH2, and GLI1. Deregulation of the Hh signaling pathway is associated with developmental anomalies and cancer, including Gorlin syndrome, and sporadic cancers, such as basal cell carcinoma, medulloblastoma, pancreatic, breast, colon, ovarian, and small-cell lung carcinomas. The aberrant activation of the Hh signaling pathway is caused by mutations in the related genes (ligand-independent signaling) or by the excessive expression of the Hh signaling molecules (ligand-dependent signaling – autocrine or paracrine). Several Hh signaling pathway inhibitors, such as vismodegib and sonidegib, have been developed for cancer treatment. These drugs are regarded as promising cancer therapies, especially for patients with refractory/advanced cancers.


Author(s):  
Ziwan Ji ◽  
Zhongming Cai ◽  
Shuming Gu ◽  
Yucang He ◽  
Zikai Zhang ◽  
...  

Since obesity impairs wound closure and adipose-derived exosomes (ADEs) regulate wound healing in clinical applications, we hypothesized that ADEs may inhibit adipogenesis of adipose-derived stem cells (ADSCs) to reduce the adverse effects of obesity on wound healing. Hedgehog (Hh) signaling has been previously shown to inhibit adipogenesis in ADSCs. The present study aimed to determine the role of ADEs in the adipogenesis of ADSCs and the Hh signaling pathway. ADSCs collected from human adipose tissues were co-cultured with ADEs and treated with an adipogenic inducer. qRT-PCR showed that ADEs could inhibit adipogenic differentiation of ADSCs and activate Hh signaling. The differences in the mRNA expression profiles of genes related to Hh signaling between the groups that were exposed to either high fat or low fat indicated that increased Hh signaling activation is necessary but not sufficient to inhibit adipogenic differentiation in the ADSC differentiation process. The Hh signaling pathway can be activated effectively by ADEs, especially during high-fat exposure after treatment with ADEs. Oil Red O staining of adipocytes suggested that ADEs inhibited not only adipogenic differentiation, but also lipogenesis in ADSCs. Overall, targeted activation of Hh signaling by ADEs reduced lipid accumulation in ADSCs and may be explored for clinical applications.


Author(s):  
Yoshinori Abe ◽  
Nobuyuki Tanaka

The epidermis is the outermost layer of skin and provides a protective barrier against environmental insults. It is a rapidly renewing tissue undergoing constant regeneration, maintained by several types of stem cells. Hedgehog (HH) ligands activate one of the fundamental signaling pathways that contribute to epidermal development, homeostasis and repair. The HH pathway interacts with other signal transduction pathways such as those activated by Wnt and bone morphogenetic protein. Furthermore, aberrant activation of HH signaling is associated with various tumors, including basal cell carcinoma. Therefore, an understanding of the regulatory mechanisms of the HH signaling pathway is important to elucidate fundamental mechanisms underlying both organogenesis and carcinogenesis. In this review, we discuss the role of the HH signaling pathway in skin development, homeostasis and basal cell carcinoma formation, providing an update of current knowledge in this field.


2020 ◽  
Author(s):  
You Li ◽  
Guohui Xiong ◽  
Jun Tan ◽  
Shudi Wang ◽  
Qiongfang Wu ◽  
...  

Abstract The molecular mechanism that triggers polycystic ovary syndrome (PCOS) is mysterious. Abnormal development of ovarian granulosa cells(GCs) is one of the causes of PCOS. Herein, we carried out RNA-seq to detect the different gene expression levels in ovarian GCs between 3 patients with PCOS and 4 normal controls, and found that Hedgehog signaling pathway(Hh) members, Ihh and Ptch2 were abnormally highly expressed in the PCOS group. To further verify the above results, GCs from 22 patients with PCOS and 21 controls with normal ovulation were collected to perform the RT-PCR analysis. The qPCR results also indicated that the expression levels of other Hh signaling pathway downstream members, Ptch1, Gli1, and Gli2 in the PCOS group were significantly higher than those in the control group. Besides, the expression of TNF-α mRNA in PCOS patients was higher than that in the control group. Finally, the Hh signaling pathway inhibitor, cyclopamine, can decrease the apoptosis of PCOS ovarian granulosa cells. These results suggest that abnormally activated Hh signaling pathway, especially Ihh signal, may have a profound influence on PCOS.


Author(s):  
Matthew W. Turner ◽  
Roberto Cruz ◽  
Jordan Elwell ◽  
John French ◽  
Jared Mattos ◽  
...  

Veratrum californicum is a rich source of steroidal alkaloids such as cyclopamine, a known inhibitor of the Hedgehog (Hh) signaling pathway. Here we provide a detailed analysis of the alkaloid composition of V. californicum by plant part through quantitative analysis of cyclopamine, veratramine, muldamine and isorubijervine in the leaf, stem and root/rhizome of the plant. To determine if additional alkaloids in the extracts contribute to Hh signaling inhibition, we replicated the concentrations of these alkaloids observed in extracts using commercially available standards and compared the inhibitory potential of the extracts to alkaloid standard mixtures using Shh-Light II cells. Alkaloid combinations enhanced Hh signaling pathway antagonism compared to cyclopamine alone, and significant differences were observed in the Hh pathway inhibition between the stem and root/rhizome extracts and their corresponding alkaloid standard mixtures, indicating that additional alkaloids present in these extracts contribute to Hh signaling inhibition.


2020 ◽  
Vol 6 (37) ◽  
pp. eaba7261
Author(s):  
Yasuko Akiyama-Oda ◽  
Hiroki Oda

Hedgehog (Hh) signaling plays fundamental roles in animal body patterning. Understanding its mechanistic complexity requires simple tractable systems that can be used for these studies. In the early spider embryo, Hh signaling mediates the formation of overall anterior-posterior polarity, yet it remains unclear what mechanisms link the initial Hh signaling activity with body axis segmentation, in which distinct periodic stripe-forming dynamics occur depending on the body region. We performed genome-wide searches for genes that transcriptionally respond to altered states of Hh signaling. Characterization of genes negatively regulated by Hh signaling suggested that msx1, encoding a conserved transcription factor, functions as a key segmentation gene. Knockdown of msx1 prevented all dynamic processes causing spatial repetition of stripes, including temporally repetitive oscillations and bi-splitting, and temporally nonrepetitive tri-splitting. Thus, Hh signaling controls segmentation dynamics and diversity via msx1. These genome-wide data from an invertebrate illuminate novel mechanistic features of Hh-based patterning.


2019 ◽  
Vol 20 (21) ◽  
pp. 5270 ◽  
Author(s):  
Igor Giarretta ◽  
Eleonora Gaetani ◽  
Margherita Bigossi ◽  
Paolo Tondi ◽  
Takayuki Asahara ◽  
...  

Hedgehog (Hh) proteins are prototypical morphogens known to regulate epithelial/mesenchymal interactions during embryonic development. In addition to its pivotal role in embryogenesis, the Hh signaling pathway may be recapitulated in post-natal life in a number of physiological and pathological conditions, including ischemia. This review highlights the involvement of Hh signaling in ischemic tissue regeneration and angiogenesis, with particular attention to the heart, the brain, and the skeletal muscle. Updated information on the potential role of the Hh pathway as a therapeutic target in the ischemic condition is also presented.


Sign in / Sign up

Export Citation Format

Share Document