scholarly journals Interrogating theEscherichia colicell cycle by cell dimension perturbations

2016 ◽  
Vol 113 (52) ◽  
pp. 15000-15005 ◽  
Author(s):  
Hai Zheng ◽  
Po-Yi Ho ◽  
Meiling Jiang ◽  
Bin Tang ◽  
Weirong Liu ◽  
...  

Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth ofEscherichia coli, in particular, follows a relation known as Schaechter’s growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels ofmreBandftsZ. We found that decreasing themreBlevel resulted in increased cell width, with little change in cell length, whereas decreasing theftsZlevel resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed “adder-per-origin” model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation.

2021 ◽  
Author(s):  
Alexandra Colin ◽  
Gabriele Micali ◽  
Louis Faure ◽  
Marco Cosentino Lagomarsino ◽  
Sven van Teeffelen

AbstractCells must control the cell cycle to ensure that key processes are brought to completion. In Escherichia coli, it is controversial whether cell division is tied to chromosome replication or to a replication-independent inter-division process. A recent model suggests instead that both processes may limit cell division with comparable odds in single cells. Here, we tested this possibility experimentally by monitoring single-cell division and replication over multiple generations at slow growth. We then perturbed cell width, causing an increase of the time between replication termination and division. As a consequence, replication became decreasingly limiting 21 for cell division, while correlations between birth and division and between subsequent replication-initiation events were maintained. Our experiments support the hypothesis that both chromosome replication and a replication-independent inter-division process can limit cell division: the two processes have balanced contributions in non-perturbed cells, while our width perturbations increase the odds of the replication-independent process being limiting.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alexandra Colin ◽  
Gabriele Micali ◽  
Louis Faure ◽  
Marco Cosentino Lagomarsino ◽  
Sven van Teeffelen

Cells must control the cell cycle to ensure that key processes are brought to completion. In Escherichia coli, it is controversial whether cell division is tied to chromosome replication or to a replication-independent inter-division process. A recent model suggests instead that both processes may limit cell division with comparable odds in single cells. Here, we tested this possibility experimentally by monitoring single-cell division and replication over multiple generations at slow growth. We then perturbed cell width, causing an increase of the time between replication termination and division. As a consequence, replication became decreasingly limiting for cell division, while correlations between birth and division and between subsequent replication-initiation events were maintained. Our experiments support the hypothesis that both chromosome replication and a replication-independent inter-division process can limit cell division: the two processes have balanced contributions in non-perturbed cells, while our width perturbations increase the odds of the replication-independent process being limiting.


2021 ◽  
Author(s):  
Dimitri Juillot ◽  
Charlene Cornilleau ◽  
Nathalie Deboosere ◽  
Cyrille Billaudeau ◽  
Parfait Evouna-Mengue ◽  
...  

How cells control their size is a fundamental question of biology. In bacteria, cell shape is imposed by the extracellular cell wall, in particular by the continuous polymer of peptidoglycan (PG) that surrounds the cell. Thus, bacterial cell morphogenesis results from the coordinated action of the proteins assembling and degrading the PG shell. Remarkably, during steady-state growth, most bacteria maintain a defined shape along generations, suggesting that an error-proof mechanism tightly controls the process. In the rod-shaped model for Gram-positive bacteria, Bacillus subtilis, it is well known that the average cell length varies as a function of growth rate but that cell diameter remains constant throughout its cell cycle and across growth conditions. Here, in an attempt to shed light on the cellular circuits controlling bacterial cell width, we developed a screen to identify genetic determinants of cell width in B. subtilis. Using HCS (high-content screening) fluorescence microscopy and semi-automated measurement of single-cell dimensions, we screened a library of ~ 4000 single knockout mutants. We identified 12 mutations significantly altering cell diameter, in genes that belong to several functional groups. In particular, these results highlight a link between cell width control and metabolism.


Author(s):  
L. A. Giannuzzi ◽  
A. S. Ramani ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bitler

The δ phase is a Zn-rich intermetallic, having a composition range of ∼ 86.5 - 92.0 atomic percent Zn, and is stable up to 665°C. The stoichiometry of the δ phase has been reported as FeZn7 and FeZn10 The deviation in stoichiometry can be attributed to variations in alloy composition used by each investigator. The structure of the δ phase, as determined by powder x-ray diffraction, is hexagonal (P63mc or P63/mmc) with cell dimensions a = 1.28 nm, c = 5.76 nm, and 555±8 atoms per unit cell. Later work suggested that the layer produced by hot-dip galvanizing should be considered as two distinct phases which are characterized by their morphological differences, namely: the iron-rich region with a compact appearance (δk) and the zinc-rich region with a columnar or palisade microstructure (δp). The sub-division of the δ phase was also based on differences in diffusion behavior, and a concentration discontinuity across the δp/δk boundary. However, work utilizing Weisenberg photographs on δ single crystals reported that the variation in lattice parameters with composition was small and hence, structurally, the δk phase and the δp phase were the same and should be thought of as a single phase, δ. Bastin et al. determined the average cell dimensions to be a = 1.28 nm and c = 5.71 nm, and suggested that perhaps some kind of ordering process, which would not be observed by x-ray diffraction, may be responsible for the morphological differences within the δ phase.


1991 ◽  
Vol 112 (4) ◽  
pp. 711-718 ◽  
Author(s):  
N Grandin ◽  
M Charbonneau

In Xenopus embryos, previous results failed to detect changes in the activity of free calcium ions (Ca2+i) during cell division using Ca2(+)-selective microelectrodes, while experiments with aequorin yielded uncertain results complicated by the variation during cell division of the aequorin concentration to cell volume ratio. We now report, using Ca2(+)-selective microelectrodes, that cell division in Xenopus embryos is accompanied by periodic oscillations of the Ca2+i level, which occur with a periodicity of 30 min, equal to that of the cell cycle. These Ca2+i oscillations were detected in 24 out of 35 experiments, and had a mean amplitude of 70 nM, around a basal Ca2+i level of 0.40 microM. Ca2+i oscillations did not take place in the absence of cell division, either in artificially activated eggs or in cleavage-blocked embryos. Therefore, Ca2+i oscillations do not represent, unlike intracellular pH oscillations (Grandin, N., and M. Charbonneau. J. Cell Biol. 111:523-532. 1990), a component of the basic cell cycle ("cytoplasmic clock" or "master oscillator"), but appear to be more likely related to some events of mitosis.


1969 ◽  
Vol 37 (288) ◽  
pp. 442-446 ◽  
Author(s):  
J. L. Jambor

SummaryThree of the members of the plagionite group, fülöppite Pb3S8S15, plagionite Pb5Sb8S17, and semseyite Pb9Sb8S21, show linear correlations of cell volume and density versus PbS:Sb2S3 mol ratios. This relationship can be used better to define the nature of the fourth member of the group, heteromorphite, Pb7Sb8S19. The cell dimensions derived for heteromorphite are a 13·60, b 11·93, c 21·22 Å, β 90° 50′.


2020 ◽  
Author(s):  
Jeanine Rismondo ◽  
Lisa M. Schulz ◽  
Maria Yacoub ◽  
Ashima Wadhawan ◽  
Michael Hoppert ◽  
...  

Lysozyme is an important component of the innate immune system. It functions by hydrolysing the peptidoglycan (PG) layer of bacteria. The human pathogen Listeria monocytogenes is intrinsically lysozyme resistant. The peptidoglycan N-deacetylase PgdA and O-acetyltransferase OatA are two known factors contributing to its lysozyme resistance. Furthermore, it was shown that the absence of components of an ABC transporter, here referred to as EslABC, leads to reduced lysozyme resistance. How its activity is linked to lysozyme resistance is still unknown. To investigate this further, a strain with a deletion in eslB, coding for a membrane component of the ABC transporter, was constructed in L. monocytogenes strain 10403S. The eslB mutant showed a 40-fold reduction in the minimal inhibitory concentration to lysozyme. Analysis of the PG structure revealed that the eslB mutant produced PG with reduced levels of O-acetylation. Using growth and autolysis assays, we show that the absence of EslB manifests in a growth defect in media containing high concentrations of sugars and increased endogenous cell lysis. A thinner PG layer produced by the eslB mutant under these growth conditions might explain these phenotypes. Furthermore, the eslB mutant had a noticeable cell division defect and formed elongated cells. Microscopy analysis revealed that an early cell division protein still localized in the eslB mutant indicating that a downstream process is perturbed. Based on our results, we hypothesize that EslB affects the biosynthesis and modification of the cell wall in L. monocytogenes and is thus important for the maintenance of cell wall integrity. IMPORTANCE The ABC transporter EslABC is associated with the intrinsic lysozyme resistance of Listeria monocytogenes. However, the exact role of the transporter in this process and in the physiology of L. monocytogenes is unknown. Using different assays to characterize an eslB deletion strain, we found that the absence of EslB not only affects lysozyme resistance, but also endogenous cell lysis, cell wall biosynthesis, cell division and the ability of the bacterium to grow in media containing high concentrations of sugars. Our results indicate that EslB is by a yet unknown mechanism an important determinant for cell wall integrity in L. monocytogenes.


2019 ◽  
Vol 18 ◽  
pp. 153303381987513 ◽  
Author(s):  
Qiang Wang ◽  
Linyou Zhang

Background: We aimed to find the possible molecular mechanisms for the roles of microRNA-21 underlying lung cancer development. Methods: MicroRNA-21-5p inhibitor was transfected into A549 cells. Total RNA was isolated from 10 samples, including 3 in control group (A549 cells), 3 in negative control group (A549 cells transferred with microRNA-21 negative control), and 4 in SH group (A549 cells transferred with microRNA-21 inhibitor), followed by RNA sequencing. Then, differentially expressed genes were screened for negative control group versus control group, SH group versus control group, and SH group versus negative control group. Functional enrichment analyses, protein–protein interaction network, and modules analyses were conducted. Target genes of hsa-miR-21-5p and transcription factors were predicted, followed by the regulatory network construction. Results: Minichromosome maintenance 10 replication initiation factor and cell division cycle associated 8 were important nodes in protein–protein interaction network with higher degrees. Cell division cycle associated 8 was enriched in cell division biological process. Furthermore, maintenance 10 replication initiation factor and cell division cycle associated 8 were significantly enriched in cluster 1 and micro-RNA-transcription factor-target genes regulating network. In addition, transcription factor Dp family member 3 (transcription factor of maintenance 10 replication initiation factor and cell division cycle associated 8) and RAD21 cohesin complex component (transcription factor of maintenance 10 replication initiation factor) were target genes of hsa-miR-21-5p. Conclusions: Micro-RNA-21 may play a key role in lung cancer partly via maintenance 10 replication initiation factor and cell division cycle associated 8. Furthermore, microRNA-21 targeted cell division cycle associated 8 and then played roles in lung cancer via the process of cell division. Transcription factor Dp family member 3 and RAD21 cohesin complex component are important transcription factors in microRNA-21-interfered lung cancer.


PLoS Genetics ◽  
2017 ◽  
Vol 13 (3) ◽  
pp. e1006702 ◽  
Author(s):  
Elisa Galli ◽  
Caroline Midonet ◽  
Evelyne Paly ◽  
François-Xavier Barre

1992 ◽  
Vol 174 (23) ◽  
pp. 7717-7728 ◽  
Author(s):  
Luz-Maria Guzman ◽  
James J. Barondess ◽  
Jon Beckwith

We have identified a gene involved in bacterial cell division, located immediately upstream of the ftsI gene in the min 2 region of the Escherichia coli chromosome. This gene, which we named ftsL , was detected through characterization of Tn phoA insertions in a plasmid containing this chromosomal region. Tn phoA topological analysis and fractionation of alkaline phosphatase fusion proteins indicated that the ftsL gene product is a 13.6-kDa cytoplasmic membrane protein with a cytoplasmic amino terminus, a single membrane-spanning segment, and a periplasmic carboxy terminus. The ftsL gene is essential for cell growth and division. A null mutation in ftsL resulted in inhibition of cell division, formation of long, nonseptate filaments, ultimate cessation of growth, and lysis. Under certain growth conditions, depletion of FtsL or expression of the largest ftsL-phoA fusion produced a variety of cell morphologies, including Y-shaped bacteria, indicating a possible general weakening of the cell wall. The FtsL protein is estimated to be present at about 20 to 40 copies per cell. The periplasmic domain of the protein displays a sequence with features characteristic of leucine zippers, which are involved in protein dimerization.


Sign in / Sign up

Export Citation Format

Share Document