scholarly journals STRIP1, a core component of STRIPAK complexes, is essential for normal mesoderm migration in the mouse embryo

2017 ◽  
Vol 114 (51) ◽  
pp. E10928-E10936 ◽  
Author(s):  
Hisham Bazzi ◽  
Ekaterina Soroka ◽  
Heather L. Alcorn ◽  
Kathryn V. Anderson

Regulated mesoderm migration is necessary for the proper morphogenesis and organ formation during embryonic development. Cell migration and its dependence on the cytoskeleton and signaling machines have been studied extensively in cultured cells; in contrast, remarkably little is known about the mechanisms that regulate mesoderm cell migration in vivo. Here, we report the identification and characterization of a mouse mutation in striatin-interacting protein 1 (Strip1) that disrupts migration of the mesoderm after the gastrulation epithelial-to-mesenchymal transition (EMT). STRIP1 is a core component of the biochemically defined mammalian striatin-interacting phosphatases and kinase (STRIPAK) complexes that appear to act through regulation of protein phosphatase 2A (PP2A), but their functions in mammals in vivo have not been examined. Strip1-null mutants arrest development at midgestation with profound disruptions in the organization of the mesoderm and its derivatives, including a complete failure of the anterior extension of axial mesoderm. Analysis of cultured mesoderm explants and mouse embryonic fibroblasts from null mutants shows that the mesoderm migration defect is correlated with decreased cell spreading, abnormal focal adhesions, changes in the organization of the actin cytoskeleton, and decreased velocity of cell migration. The results show that STRIPAK complexes are essential for cell migration and tissue morphogenesis in vivo.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chenxi Wu ◽  
Xiang Ding ◽  
Zhuojie Li ◽  
Yuanyuan Huang ◽  
Qian Xu ◽  
...  

AbstractCancer is one of the most fatal diseases that threaten human health, whereas more than 90% mortality of cancer patients is caused by tumor metastasis, rather than the growth of primary tumors. Thus, how to effectively control or even reverse the migration of tumor cells is of great significance for cancer therapy. CtBP, a transcriptional cofactor displaying high expression in a variety of human cancers, has become one of the main targets for cancer prediction, diagnosis, and treatment. The roles of CtBP in promoting tumorigenesis have been well studied in vitro, mostly based on gain-of-function, while its physiological functions in tumor invasion and the underlying mechanism remain largely elusive. Snail (Sna) is a well-known transcription factor involved in epithelial-to-mesenchymal transition (EMT) and tumor invasion, yet the mechanism that regulates Sna activity has not been fully understood. Using Drosophila as a model organism, we found that depletion of CtBP or snail (sna) suppressed RasV12/lgl-/--triggered tumor growth and invasion, and disrupted cell polarity-induced invasive cell migration. In addition, loss of CtBP inhibits RasV12/Sna-induced tumor invasion and Sna-mediated invasive cell migration. Furthermore, both CtBP and Sna are physiologically required for developmental cell migration during thorax closure. Finally, Sna activates the JNK signaling and promotes JNK-dependent cell invasion. Given that CtBP physically interacts with Sna, our data suggest that CtBP and Sna may form a transcriptional complex that regulates JNK-dependent tumor invasion and cell migration in vivo.


2019 ◽  
Vol 20 (2) ◽  
pp. 275 ◽  
Author(s):  
Lei Chen ◽  
Qingling He ◽  
Yamin Liu ◽  
Yafei Wu ◽  
Dongsheng Ni ◽  
...  

PPP3CB belongs to the phosphoprotein phosphatases (PPPs) group. Although the majority of the PPP family play important roles in the epithelial-to-mesenchymal transition (EMT) of tumor cells, little is known about the function of PPP3CB in the EMT process. Here, we found PPP3CB had high expression in kidney mesenchymal-like cells compared with kidney epithelial-like cells. Knock-down of PPP3CB downregulated epithelial marker E-cadherin and upregulated mesenchymal marker Vimentin, promoting the transition of cell states from epithelial to mesenchymal and reorganizing the actin cytoskeleton which contributed to cell migration. Conversely, overexpression of PPP3CB reversed EMT and inhibited migration of tumor cells. Besides, in vitro and in vivo experiments indicated that the loss of PPP3CB suppressed the tumor growth. However, the deletion of the phosphatase domain of PPP3CB showed no effect on the expression of E-cadherin, migration, and G401 cell proliferation. Together, we demonstrate that PPP3CB inhibits G401 cell migration through regulating EMT and promotes cell proliferation, which are both associated with the phosphatase activity of PPP3CB.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A M Smits ◽  
A M D Vegh ◽  
T Van Herwaarden ◽  
E Dronkers ◽  
A T Moerkamp ◽  
...  

Abstract Background The epicardium, the outer layer of the heart, is an indispensable source of cells and paracrine factors during embryonic heart formation. In the adult heart, the epicardium is quiescent unless there is injury. Cardiac damage results in partial recapitulation of developmental processes including epithelial-to-mesenchymal transition (EMT), expression of Wilms' Tumor-1 (WT1), proliferation, and migration of epicardial-derived cells (EPDCs). Aim Given their vital role during development, EPDCs represent an appealing source for endogenous cardiovascular repair. However, EPDC contribution to cardiac tissue formation in the adult is less efficient than during embryonic development. Our aim is to determine the requirements to optimize the adult epicardial response to injury. Methods Human foetal and adult EPDCs were isolated from cardiac specimens and cultured as epithelial-like cells in the presence of an Alk5-kinase inhibitor (A5ki). EMT was induced by adding 1 ng/mL TGFβ for 5 days. Immunofluorescent staining, qPCR, and cytokine arrays were performed. Cultured adult EPDCs pre- and post-EMT were transplanted into the myocardial wall of NOD-SCID mice after inducing myocardial infarction (MI), and cardiac function was measured by high-frequency ultrasound. Hearts were histologically analysed 3 days and 6 weeks post-MI. Results Both foetal and adult human EPDCs can be expanded in culture and undergo EMT after TGFβ stimulation leading to morphological changes accompanied by downregulation of WT1 and E-cadherin, and upregulation of mesenchymal genes. Importantly, upon removal of Alk5ki, foetal EPDCs display instant spontaneous EMT, suggesting the importance of this process for EPDCs' developmental potential. In vivo, animals receiving intramyocardial transplantation of post-EMT EPDCs displayed a higher ejection fraction 6 weeks after MI compared to pre-EMT EPDC receiving animals (26%±11 n=8 vs. 11%±5 n=9 respectively P<0.05). This corresponded to a smaller infarct size in the post-EMT group (16,4%±4 of the left ventricle versus 26,9%±5 in pre-EMT, p<0.05). This could not be explained by a difference in cell grafting, analysed at 3 days post-MI. After 6 weeks, we observed a small difference in human collagen deposition in the post-EMT group, however very low numbers of human cells were detected suggesting a predominantly short-acting paracrine effect. Analysis of cytokine production of cultured cells revealed a higher production of factors involved in angiogenesis and chemotaxis like VEGF and MCP-3 in post-EMT EPDCs in comparison to pre-EMT EPDCs. Effects on local angiogenesis and inflammation in vivo are being investigated Conclusion EPDCs require EMT to acquire the ability to contribute to cardiac repair, which appears to be predominantly through paracrine processes. Our research now focuses on enhancing EMT of endogenous epicardial cells. Acknowledgement/Funding AMS is funded by a Dekker fellowship from the Dutch Heart Foundation


2019 ◽  
Vol 63 (5) ◽  
pp. 579-594 ◽  
Author(s):  
Guillem Lambies ◽  
Antonio García de Herreros ◽  
Víctor M. Díaz

Abstract Cell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yu Tian ◽  
Bo Tang ◽  
Chengye Wang ◽  
Yan Wang ◽  
Jiakai Mao ◽  
...  

AbstractOncogenic ubiquitin-specific protease 22 (USP22) is implicated in a variety of tumours; however, evidence of its role and underlying molecular mechanisms in cholangiocarcinoma (CCA) development remains unknown. We collected paired tumour and adjacent non-tumour tissues from 57 intrahepatic CCA (iCCA) patients and evaluated levels of the USP22 gene and protein by qPCR and immunohistochemistry. Both the mRNA and protein were significantly upregulated, correlated with the malignant invasion and worse OS of iCCA. In cell cultures, USP22 overexpression increased CCA cell proliferation and mobility, and induced epithelial-to-mesenchymal transition (EMT). Upon an interaction, USP22 deubiquitinated and stabilized sirtuin-1 (SIRT1), in conjunction with Akt/ERK activation. In implantation xenografts, USP22 overexpression stimulated tumour growth and metastasis to the lungs of mice. Conversely, the knockdown by USP22 shRNA attenuated the tumour growth and invasiveness in vitro and in vivo. Furthermore, SIRT1 overexpression reversed the USP22 functional deficiency, while the knockdown acetylated TGF-β-activated kinase 1 (TAK1) and Akt. Our present study defines USP22 as a poor prognostic predictor in iCCA that cooperates with SIRT1 and facilitates tumour development.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 638
Author(s):  
Kittipong Sanookpan ◽  
Nongyao Nonpanya ◽  
Boonchoo Sritularak ◽  
Pithi Chanvorachote

Cancer metastasis is the major cause of about 90% of cancer deaths. As epithelial-to-mesenchymal transition (EMT) is known for potentiating metastasis, this study aimed to elucidate the effect of ovalitenone on the suppression of EMT and metastasis-related behaviors, including cell movement and growth under detached conditions, and cancer stem cells (CSCs), of lung cancer cells. Methods: Cell viability and cell proliferation were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazo-liumbromide (MTT) and colony formation assays. Cell migration and invasion were analyzed using a wound-healing assay and Boyden chamber assay, respectively. Anchorage-independent cell growth was determined. Cell protrusions (filopodia) were detected by phalloidin-rhodamine staining. Cancer stem cell phenotypes were assessed by spheroid formation. The proteins involved in cell migration and EMT were evaluated by Western blot analysis and immunofluorescence staining. Results: Ovalitenone was used at concentrations of 0–200 μM. While it caused no cytotoxic effects on lung cancer H460 and A549 cells, ovalitenone significantly suppressed anchorage-independent growth, CSC-like phenotypes, colony formation, and the ability of the cancer to migrate and invade cells. The anti-migration activity was confirmed by the reduction of filopodia in the cells treated with ovalitenone. Interestingly, we found that ovalitenone could significantly decrease the levels of N-cadherin, snail, and slug, while it increased E-cadherin, indicating EMT suppression. Additionally, the regulatory signaling of focal adhesion kinase (FAK), ATP-dependent tyrosine kinase (AKT), the mammalian target of rapamycin (mTOR), and cell division cycle 42 (Cdc42) was suppressed by ovalitenone. Conclusions: The results suggest that ovalitenone suppresses EMT via suppression of the AKT/mTOR signaling pathway. In addition, ovalitenone exhibited potential for the suppression of CSC phenotypes. These data reveal the anti-metastasis potential of the compound and support the development of ovalitenone treatment for lung cancer therapy.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1742
Author(s):  
Melysa Fitriana ◽  
Wei-Lun Hwang ◽  
Pak-Yue Chan ◽  
Tai-Yuan Hsueh ◽  
Tsai-Tsen Liao

Head and neck squamous cell carcinomas (HNSCCs) are epithelial malignancies with 5-year overall survival rates of approximately 40–50%. Emerging evidence indicates that a small population of cells in HNSCC patients, named cancer stem cells (CSCs), play vital roles in the processes of tumor initiation, progression, metastasis, immune evasion, chemo-/radioresistance, and recurrence. The acquisition of stem-like properties of cancer cells further provides cellular plasticity for stress adaptation and contributes to therapeutic resistance, resulting in a worse clinical outcome. Thus, targeting cancer stemness is fundamental for cancer treatment. MicroRNAs (miRNAs) are known to regulate stem cell features in the development and tissue regeneration through a miRNA–target interactive network. In HNSCCs, miRNAs act as tumor suppressors and/or oncogenes to modulate cancer stemness and therapeutic efficacy by regulating the CSC-specific tumor microenvironment (TME) and signaling pathways, such as epithelial-to-mesenchymal transition (EMT), Wnt/β-catenin signaling, and epidermal growth factor receptor (EGFR) or insulin-like growth factor 1 receptor (IGF1R) signaling pathways. Owing to a deeper understanding of disease-relevant miRNAs and advances in in vivo delivery systems, the administration of miRNA-based therapeutics is feasible and safe in humans, with encouraging efficacy results in early-phase clinical trials. In this review, we summarize the present findings to better understand the mechanical actions of miRNAs in maintaining CSCs and acquiring the stem-like features of cancer cells during HNSCC pathogenesis.


2021 ◽  
Vol 22 (10) ◽  
pp. 5194
Author(s):  
Paola Pontrelli ◽  
Francesca Conserva ◽  
Rossella Menghini ◽  
Michele Rossini ◽  
Alessandra Stasi ◽  
...  

Diabetic nephropathy (DN) is the most frequent cause of end-stage renal disease. Tubulointerstitial accumulation of lysine 63 (K63)-ubiquitinated (Ub) proteins is involved in the progression of DN fibrosis and correlates with urinary miR-27b-3p downregulation. We explored the renoprotective effect of an inhibitor of K63-Ub (NSC697923), alone or in combination with the ACE-inhibitor ramipril, in vitro and in vivo. Proximal tubular epithelial cells and diabetic DBA/2J mice were treated with NSC697923 and/or ramipril. K63-Ub protein accumulation along with α-SMA, collagen I and III, FSP-1, vimentin, p16INK4A expression, SA-α Gal staining, Sirius Red, and PAS staining were measured. Finally, we measured the urinary albumin to creatinine ratio (uACR), and urinary miR-27b-3p expression in mice. NSC697923, both alone and in association with ramipril, in vitro and in vivo inhibited hyperglycemia-induced epithelial to mesenchymal transition by significantly reducing K63-Ub proteins, α-SMA, collagen I, vimentin, FSP-1 expression, and collagen III along with tubulointerstitial and glomerular fibrosis. Treated mice also showed recovery of urinary miR-27b-3p and restored expression of p16INK4A. Moreover, NSC697923 in combination with ramipril demonstrated a trend in the reduction of uACR. In conclusion, we suggest that selective inhibition of K63-Ub, when combined with the conventional treatment with ACE inhibitors, might represent a novel treatment strategy to prevent the progression of fibrosis and proteinuria in diabetic nephropathy and we propose miR-27b-3p as a biomarker of treatment efficacy.


2021 ◽  
pp. 1-15
Author(s):  
Ping Xu ◽  
Xiao Mo ◽  
Ruixue Xia ◽  
Long Jiang ◽  
Chengfei Zhang ◽  
...  

BACKGROUND: Potassium channels, encoded by more than seventy genes, are cell excitability transmembrane proteins and become evident to play essential roles in tumor biology. OBJECTIVE: The deregulation of potassium channel genes has been related to cancer development and patient prognosis. The objective of this study is to understand the role of potassium channels in lung cancer. METHODS: We examined all potassium channel genes and identified that KCNN4 is the most significantly overexpressed one in lung adenocarcinoma. The role and mechanism of KCNN4 in lung adenocarcinoma were further investigated by in vitro cell and molecular assay and in vivo mouse xenograft models. RESULTS: We revealed that the silencing of KCNN4 significantly inhibits cell proliferation, migration, invasion, and tumorigenicity of lung adenocarcinoma. Further studies showed that knockdown of KCNN4 promotes cell apoptosis, induces cell cycle arrested in the S phase, and is associated with the epithelial to mesenchymal transition (EMT) process. Most importantly, we demonstrated that KCNN4 regulates the progression of lung adenocarcinoma through P13K/AKT and MEK/ERK signaling pathways. The use of inhibitors that targeted AKT and ERK also significantly inhibit the proliferation and metastasis of lung adenocarcinoma cells. CONCLUSIONS: This study investigated the function and mechanism of KCNN4 in lung adenocarcinoma. On this basis, this means that KCNN4 can be used as a tumor marker for lung adenocarcinoma and is expected to become an important target for a potential drug.


2021 ◽  
Vol 12 (1) ◽  
pp. 009-019
Author(s):  
Ying Yang ◽  
Jin Wang ◽  
Shihai Xu ◽  
Wen Lv ◽  
Fei Shi ◽  
...  

Abstract Background In cancer, kappa B-interacting protein (IKBIP) has rarely been reported. This study aimed at investigating its expression pattern and biological function in brain glioma at the transcriptional level. Methods We selected 301 glioma patients with microarray data from CGGA database and 697 glioma patients with RNAseq data from TCGA database. Transcriptional data and clinical data of 998 samples were analyzed. Statistical analysis and figure generating were performed with R language. Results We found that IKBIP expression showed positive correlation with WHO grade of glioma. IKBIP was increased in isocitrate dehydrogenase (IDH) wild type and mesenchymal molecular subtype of glioma. Gene ontology analysis demonstrated that IKBIP was profoundly associated with extracellular matrix organization, cell–substrate adhesion and response to wounding in both pan-glioma and glioblastoma. Subsequent gene set enrichment analysis revealed that IKBIP was particularly correlated with epithelial-to-mesenchymal transition (EMT). To further elucidate the relationship between IKBIP and EMT, we performed gene set variation analysis to screen the EMT-related signaling pathways and found that IKBIP expression was significantly associated with PI3K/AKT, hypoxia and TGF-β pathway. Moreover, IKBIP expression was found to be synergistic with key biomarkers of EMT, especially with N-cadherin, vimentin, snail, slug and TWIST1. Finally, higher IKBIP indicated significantly shorter survival for glioma patients. Conclusions IKBIP was associated with more aggressive phenotypes of gliomas. Furthermore, IKBIP was significantly involved in EMT and could serve as an independent prognosticator in glioma.


Sign in / Sign up

Export Citation Format

Share Document