scholarly journals PPP3CB Inhibits Migration of G401 Cells via Regulating Epithelial-to-Mesenchymal Transition and Promotes G401 Cells Growth

2019 ◽  
Vol 20 (2) ◽  
pp. 275 ◽  
Author(s):  
Lei Chen ◽  
Qingling He ◽  
Yamin Liu ◽  
Yafei Wu ◽  
Dongsheng Ni ◽  
...  

PPP3CB belongs to the phosphoprotein phosphatases (PPPs) group. Although the majority of the PPP family play important roles in the epithelial-to-mesenchymal transition (EMT) of tumor cells, little is known about the function of PPP3CB in the EMT process. Here, we found PPP3CB had high expression in kidney mesenchymal-like cells compared with kidney epithelial-like cells. Knock-down of PPP3CB downregulated epithelial marker E-cadherin and upregulated mesenchymal marker Vimentin, promoting the transition of cell states from epithelial to mesenchymal and reorganizing the actin cytoskeleton which contributed to cell migration. Conversely, overexpression of PPP3CB reversed EMT and inhibited migration of tumor cells. Besides, in vitro and in vivo experiments indicated that the loss of PPP3CB suppressed the tumor growth. However, the deletion of the phosphatase domain of PPP3CB showed no effect on the expression of E-cadherin, migration, and G401 cell proliferation. Together, we demonstrate that PPP3CB inhibits G401 cell migration through regulating EMT and promotes cell proliferation, which are both associated with the phosphatase activity of PPP3CB.

2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1340 ◽  
Author(s):  
Olaia Martinez-Iglesias ◽  
Alba Casas-Pais ◽  
Raquel Castosa ◽  
Andrea Díaz-Díaz ◽  
Daniel Roca-Lema ◽  
...  

The requirement of the E3 ubiquitin-ligase Hakai for the ubiquitination and subsequent degradation of E-cadherin has been associated with enhanced epithelial-to-mesenchymal transition (EMT), tumour progression and carcinoma metastasis. To date, most of the reported EMT-related inhibitors were not developed for anti-EMT purposes, but indirectly affect EMT. On the other hand, E3 ubiquitin-ligase enzymes have recently emerged as promising therapeutic targets, as their specific inhibition would prevent wider side effects. Given this background, a virtual screening was performed to identify novel specific inhibitors of Hakai, targeted against its phosphotyrosine-binding pocket, where phosphorylated-E-cadherin specifically binds. We selected a candidate inhibitor, Hakin-1, which showed an important effect on Hakai-induced ubiquitination. Hakin-1 also inhibited carcinoma growth and tumour progression both in vitro, in colorectal cancer cell lines, and in vivo, in a tumour xenograft mouse model, without apparent systemic toxicity in mice. Our results show for the first time that a small molecule putatively targeting the E3 ubiquitin-ligase Hakai inhibits Hakai-dependent ubiquitination of E-cadherin, having an impact on the EMT process. This represents an important step forward in a future development of an effective therapeutic drug to prevent or inhibit carcinoma tumour progression.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Yongshun Li ◽  
Changrong Huang ◽  
Qizhou Bai ◽  
Jun Yu

AbstractEsophageal cancer is a common digestive tract cancer, which is a serious threat to human health. Ribophorin II (RPN2) is a part of an N-oligosaccharyltransferase complex, which is excessively expressed in many kinds of cancers. In the present study, we explore the biological role of RNP2 in esophageal cancer. First, we found that the expression of RPN2 was higher in esophageal cancer tissues than in adjacent non-tumor tissues, and negatively correlated with E-cadherin expression. RPN2 expression levels in esophageal cancer tissues were positively associated with differentiation and tumor node metastasis (TNM) stage. Furthermore, the expression of RPN2 was increased significantly in esophageal cancer cell lines compared with normal cells. The effect of RPN2 down-regulation on cell proliferation, cell migration, and cell invasion was examined by cell counting kit-8 (CCK8), wound healing assay, and Transwell assay, respectively. Silencing RPN2 effectively inhibited cell proliferation of esophageal cancer cells in vitro and in vivo. Cell migration and invasion were also weakened dramatically by siRPN2 treatment of esophageal cancer cells. In addition, protein expression of proliferating cell nuclear antigen (PCNA), matrix metalloproteinase (MMP-2), and E-cadherin in esophageal cancer cells was determined by Western blot analysis. PCNA, MMP-2, E-cadherin, Snail and phosphorylation-Smad2/3 expression was also regulated notably by siRPN2 treatment. These findings indicate that RPN2 exhibits oncogenetic capabilities in esophageal cancer, which could provide novel insights into esophageal cancer prevention and treatment.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Li Geng ◽  
Zhongqiu Wang ◽  
Yongju Tian

Abstract Background Ovarian cancer is a common gynecological malignant disease in women. Our work aimed to study the specific functions of ZNF252P antisense RNA 1 (ZNF252P-AS1) in ovarian cancer. Methods ZNF252P-AS1, miR-324-3p, and lymphocyte antigen 6 family member K (LY6K) expression were analyzed by bioinformatics tools in ovarian cancer tissues and was quantified by qRT-PCR in ovarian cancer cells. The effect of ZNF252P-AS1 knockdown, miR-324-3p suppression, and LY6K over-expression on apoptosis, cell viability, invasion, migration, and epithelial to mesenchymal transition (EMT) was determined in vitro by using colony formation and EdU assays, flow cytometry, transwell assay, and Western blot. The interactions between ZNF252P-AS1 and miR-324-3p and between miR-324-3p and LY6K were validated by luciferase assays. The effects of restraining ZNF252P-AS1 in vivo were studied using BALB/c male nude mice. Results ZNF252P-AS1 and LY6K levels were up-regulated, while miR-324-3p was declined in ovarian cancer tissues and cells. ZNF252P-AS1 knockdown reduced ovarian cancer cell proliferation, invasion, migration, and EMT, whereas promoted its apoptosis. Besides, ZNF252P-AS1 interacted with miR-324-3p and reversely regulated its level, and miR-324-3p was directly bound to LY6K and negatively regulated its expression. Moreover, ZNF252P-AS1 knockdown reversed the effect of miR-324-3p on cancer cell apoptosis, growth, migration, invasion, and EMT. Similar results were discovered in the rescue experiments between miR-324-3p and LY6K. Additionally, mouse models in vivo experiments further validated that ZNF252P-AS1 knockdown distinctly inhibited tumor growth. Conclusion ZNF252P-AS1 mediated miR-324-3p/LY6K signaling to facilitate progression of ovarian cancer.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chenxi Wu ◽  
Xiang Ding ◽  
Zhuojie Li ◽  
Yuanyuan Huang ◽  
Qian Xu ◽  
...  

AbstractCancer is one of the most fatal diseases that threaten human health, whereas more than 90% mortality of cancer patients is caused by tumor metastasis, rather than the growth of primary tumors. Thus, how to effectively control or even reverse the migration of tumor cells is of great significance for cancer therapy. CtBP, a transcriptional cofactor displaying high expression in a variety of human cancers, has become one of the main targets for cancer prediction, diagnosis, and treatment. The roles of CtBP in promoting tumorigenesis have been well studied in vitro, mostly based on gain-of-function, while its physiological functions in tumor invasion and the underlying mechanism remain largely elusive. Snail (Sna) is a well-known transcription factor involved in epithelial-to-mesenchymal transition (EMT) and tumor invasion, yet the mechanism that regulates Sna activity has not been fully understood. Using Drosophila as a model organism, we found that depletion of CtBP or snail (sna) suppressed RasV12/lgl-/--triggered tumor growth and invasion, and disrupted cell polarity-induced invasive cell migration. In addition, loss of CtBP inhibits RasV12/Sna-induced tumor invasion and Sna-mediated invasive cell migration. Furthermore, both CtBP and Sna are physiologically required for developmental cell migration during thorax closure. Finally, Sna activates the JNK signaling and promotes JNK-dependent cell invasion. Given that CtBP physically interacts with Sna, our data suggest that CtBP and Sna may form a transcriptional complex that regulates JNK-dependent tumor invasion and cell migration in vivo.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xuan Liu ◽  
Qing Ji ◽  
Wanli Deng ◽  
Ni Chai ◽  
Yuanyuan Feng ◽  
...  

JPJD was an ideal alternative traditional Chinese medicine compound in the prevention and treatment of CRC, but its underlying mechanisms has not been fully elucidated. In this study, we demonstrated in vitro that TGF-β-induced EMT promoted the invasion and metastasis of CRC cells, reduced the expression of E-cadherin, and elevated the expression of Vimentin. However, JPJD could inhibit the invasive and migratory ability of TGF-β-stimulated CRC cells in a concentration-dependent manner through increasing the expression of E-cadherin and repressing the expression of Vimentin, as well as the inhibition of TGF-β/Smad signaling pathway. Meanwhile, JPJD reduced the transcriptional activities of EMT-associated factors Snail and E-cadherin during the initiation of TGF-β-induced EMT. In vivo, the results demonstrated that JPJD can significantly inhibit the liver and lung metastasis of orthotopic CRC tumor in nude mice, as well as significantly prolonging the survival time of tumor-bearing in a dose-dependent manner. Additionally, JPJD can upregulate the expression of E-cadherin and Smad2/3 in the cytoplasm and downregulate the expression of Vimentin, p-Smad2/3, and Snail in the orthotopic CRC tumor tissues. In conclusions, our new findings provided evidence that JPJD could inhibit TGF-β-induced EMT in CRC through TGF-β/Smad mediated Snail/E-cadherin expression.


2016 ◽  
Vol 40 (5) ◽  
pp. 1029-1038 ◽  
Author(s):  
Tung-Wei Hung ◽  
Jen-Pi Tsai ◽  
Shin-Huey Lin ◽  
Chien-Hsing Lee ◽  
Yi-Hsien Hsieh ◽  
...  

Background/Aims: Tubulointerstitial fibrosis can lead to end-stage renal disease. Pentraxin 3 (PTX3) is an acute phase protein produced by resident and innate immunity cells. We investigated the effect of PTX3 on cultured human proximal tubular epithelial (HK-2) cells and a rat unilateral ureteral obstruction (UUO) model of renal fibrosis. Methods: Gain-of-function experiments were used to examine the effect of recombinant human PTX3 (Rh-PTX3) on HK-2 cells. Cell proliferation (MTT assay) and in vitro cell migration were measured. The levels of PTX3, p-JNK, and EMT markers were measured using immunohistochemistry, RT-PCR, and western blotting in UUO rats and HK-2 cells. Results: HK-2 cells treated with Rh PTX3 did not affect cell viability, but significantly increased cell migration. Moreover, Rh-PTX3 increased the expression of snail, slug, N-cadherin, and vimentin, decreased the expression of E-cadherin, and increased the phosphorylation of JNK. SP600126 (a specific JNK inhibitor) enhanced the effects of Rh-PTX3. Rats with UUO exhibited time-dependent increased levels of PTX3, p-JNK, and vimentin, and decreased expression of E-cadherin. Conclusions: Our results suggest that PTX3 induces cell migration via upregulation of EMT in a JNK-dependent mechanism, and highlight the role of PTX3 in the pathogenesis renal fibrosis.


2017 ◽  
Vol 313 (5) ◽  
pp. C556-C566 ◽  
Author(s):  
Phattrakorn Powan ◽  
Sudjit Luanpitpong ◽  
Xiaoqing He ◽  
Yon Rojanasakul ◽  
Pithi Chanvorachote

The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers.


2018 ◽  
Vol 46 (1) ◽  
pp. 238-252 ◽  
Author(s):  
Zhonglin Zhu ◽  
Zhilong Yu ◽  
Jianfeng Wang ◽  
Lisheng Zhou ◽  
Jing Zhang ◽  
...  

Background/Aims: Krüppel-like factor 4 (KLF4), a member of the KLF family of zinc finger transcription factors, has been identified as a tumor suppressor gene in a variety of tumors. However, the molecular mechanisms by which KLF4 inhibits epithelial-to-mesenchymal transition (EMT) and metastasis in pancreatic cancer remain unclear. Methods: KLF4 expression in pancreatic cancer was analyzed using public datasets (Oncomine and The Cancer Genome Atlas). The expression of KLF4, caveolin-1 (Cav-1), E-cadherin, and vimentin, and their correlations with clinicopathological characteristics were evaluated by immunohistochemistry in pancreatic cancer tissues. The biological functions and underlying mechanisms of KLF4 expression on EMT and metastasis were also investigated in vitro and in vivo. Results: Public datasets showed that KLF4 expression was significantly decreased in pancreatic cancer and correlated with the depth of invasion and disease stage. The expression of KLF4, Cav-1, E-cadherin, and vimentin protein in pancreatic cancer tissues was closely associated with pathological grade, disease stage, and metastasis. KLF4 expression was also positively correlated with E-cadherin expression and negatively correlated with vimentin expression, whereas Cav-1 expression was negatively associated with E-cadherin expression and positively correlated with vimentin expression. Knockdown of KLF4 expression promoted EMT and facilitated pancreatic cancer cell growth and metastasis in vitro and in vivo. In addition, immunohistochemistry (IHC) results indicated that KLF4 expression was negatively correlated with Cav-1 expression. Furthermore, down-regulating KLF4 expression increased Cav-1 and vimentin expression and decreased E-cadherin expression. Mechanistically, KLF4 could transcriptionally inhibit Cav-1 expression by binding directly to the promoter domain of Cav-1. Conclusions: KLF4 inhibits pancreatic cancer EMT and metastasis by down-regulating Cav-1 expression, suggesting that the KLF4/Cav-1 signaling pathway may be a novel diagnostic and therapeutic target.


2012 ◽  
Vol 30 (30_suppl) ◽  
pp. 84-84 ◽  
Author(s):  
Jose Humberto Trevino-Villarreal ◽  
Rosalinda Sepulveda ◽  
Douglas A. Cotanche ◽  
Rick A. Rogers

84 Background: Melanoma-associated stroma cells play an important role in supporting cancer cell proliferation, invasion, and dissemination. Increased invasiveness has been observed in cancer cells undergoing epithelial-to-mesenchymal transition (EMT); however, it is unknown whether EMT is facilitated by stroma cells. We showed that pericytes constitute a predominant stroma subpopulation that promotes melanoma growth by interacting with cancer cells. This study investigates the mechanism by which pericytes facilitate melanoma development. Methods: GFP+ pericytes isolated from tumors and adipose tissue were co-cultured in vitro with B16 melanoma cells at a 3:1 ratio. After 4 days, proliferation of B16 cells and pericytes was assessed. Also, co-cultures were labeled for several markers and analyzed by flow cytometry (FC). Tumorigenicity was investigated by isolating B16 cells from co-cultures by FACS sorting and then injected into SCID mice to measure tumor growth. Results: B16 cells induced pericyte differentiation into FAP+ myofibroblasts. However, no change in the pericyte proliferation rate was observed. B16 cells co-cultured with pericytes, and later separated by FACS sorting, displayed faster proliferation rates in vitro, and induced increased tumor growth rates when injected into SCID mice, compared with naive B16 cells. Pericytes increased B16 cell proliferation rate and induced a change in cell morphology, from cobblestone to fibroblast-like colonies. Interaction between B16 cells and pericytes in co-culture increased pericyte production of TGF-β and increased the expression of the stem cell markers SSEA-1, OCT3/4 and CD271 in B16 cells. In addition, cadherin switching, demonstrated by loss of E-cadherin expression and an up-regulation of the mesenchymal markers N-cadherin and vimentin was observed in B16 cells. Conclusions: Pericyte production of TGF-β promotes B16 cell development of EMT, as shown by loss of E-cadherin expression and up-regulation of the mesenchymal markers N-cadherin and vimentin, resulting in an increase in melanoma cell tumorigenicity. These results suggest that therapies targeting stromal pericytes may be a promising approach for melanoma treatment.


Sign in / Sign up

Export Citation Format

Share Document