scholarly journals CHD4 and the NuRD complex directly control cardiac sarcomere formation

2018 ◽  
Vol 115 (26) ◽  
pp. 6727-6732 ◽  
Author(s):  
Caralynn M. Wilczewski ◽  
Austin J. Hepperla ◽  
Takashi Shimbo ◽  
Lauren Wasson ◽  
Zachary L. Robbe ◽  
...  

Cardiac development relies on proper cardiomyocyte differentiation, including expression and assembly of cell-type-specific actomyosin subunits into a functional cardiac sarcomere. Control of this process involves not only promoting expression of cardiac sarcomere subunits but also repressing expression of noncardiac myofibril paralogs. This level of transcriptional control requires broadly expressed multiprotein machines that modify and remodel the chromatin landscape to restrict transcription machinery access. Prominent among these is the nucleosome remodeling and deacetylase (NuRD) complex, which includes the catalytic core subunit CHD4. Here, we demonstrate that direct CHD4-mediated repression of skeletal and smooth muscle myofibril isoforms is required for normal cardiac sarcomere formation, function, and embryonic survival early in gestation. Through transcriptomic and genome-wide analyses of CHD4 localization, we identified unique CHD4 binding sites in smooth muscle myosin heavy chain, fast skeletal α-actin, and the fast skeletal troponin complex genes. We further demonstrate that in the absence of CHD4, cardiomyocytes in the developing heart form a hybrid muscle cell that contains cardiac, skeletal, and smooth muscle myofibril components. These misexpressed paralogs intercalate into the nascent cardiac sarcomere to disrupt sarcomere formation and cause impaired cardiac function in utero. These results demonstrate the genomic and physiological requirements for CHD4 in mammalian cardiac development.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathaniel D. Anderson ◽  
Yael Babichev ◽  
Fabio Fuligni ◽  
Federico Comitani ◽  
Mehdi Layeghifard ◽  
...  

AbstractLeiomyosarcomas (LMS) are genetically heterogeneous tumors differentiating along smooth muscle lines. Currently, LMS treatment is not informed by molecular subtyping and is associated with highly variable survival. While disease site continues to dictate clinical management, the contribution of genetic factors to LMS subtype, origins, and timing are unknown. Here we analyze 70 genomes and 130 transcriptomes of LMS, including multiple tumor regions and paired metastases. Molecular profiling highlight the very early origins of LMS. We uncover three specific subtypes of LMS that likely develop from distinct lineages of smooth muscle cells. Of these, dedifferentiated LMS with high immune infiltration and tumors primarily of gynecological origin harbor genomic dystrophin deletions and/or loss of dystrophin expression, acquire the highest burden of genomic mutation, and are associated with worse survival. Homologous recombination defects lead to genome-wide mutational signatures, and a corresponding sensitivity to PARP trappers and other DNA damage response inhibitors, suggesting a promising therapeutic strategy for LMS. Finally, by phylogenetic reconstruction, we present evidence that clones seeding lethal metastases arise decades prior to LMS diagnosis.


2021 ◽  
Vol 168 ◽  
pp. 67-76
Author(s):  
Rosita Russo ◽  
Veronica Russo ◽  
Francesco Cecere ◽  
Mariangela Valletta ◽  
Maria Teresa Gentile ◽  
...  

2005 ◽  
Vol 25 (24) ◽  
pp. 10953-10964 ◽  
Author(s):  
Chie Kaneko-Oshikawa ◽  
Tadashi Nakagawa ◽  
Mitsunori Yamada ◽  
Hiroo Yoshikawa ◽  
Masaki Matsumoto ◽  
...  

ABSTRACT Ubiquitin conjugation typically requires three classes of enzyme: E1, E2, and E3. A fourth type of enzyme (E4), however, was recently shown to be required for the degradation of certain types of substrate in yeast. We previously identified UFD2a (also known as E4B) as an E4 in mammals. UFD2a is exclusively expressed in cardiac muscle during mouse embryonic development, but it is abundant in neurons of adult mice and is implicated in the pathogenesis of neurodegenerative disease. The precise physiological function of this enzyme has remained largely unknown, however. Here, we show that mice lacking UFD2a die in utero, manifesting marked apoptosis in the developing heart. Polyubiquitylation activity for an E4 substrate was greatly reduced in Ufd2a −/− mouse embryonic fibroblasts. Furthermore, Ufd2a +/− mice displayed axonal dystrophy in the nucleus gracilis, as well as degeneration of Purkinje cells accompanied by endoplasmic reticulum stress. These animals also developed a neurological disorder. UFD2a thus appears to be essential for the development of cardiac muscle, as well as for the protection of spinocerebellar neurons from degeneration induced by endoplasmic reticulum stress.


2019 ◽  
Author(s):  
Matteo Vecellio ◽  
Adrian Cortes ◽  
Sarah Bonham ◽  
Carlo Selmi ◽  
Julian C Knight ◽  
...  

ABSTRACTObjectivesTo investigate the functional consequences of the single nucleotide polymorphism rs4648889 in a putative enhancer upstream of the RUNX3 promoter strongly associated with ankylosing spondylitis (AS).MethodsThe effects of rs4648889 on transcription factor (TF) binding were tested by DNA pull-down and quantitative mass spectrometry. The results were validated by electrophoretic mobility gel shift assays (EMSA), Western blot (WB) analysis of the pulled-down eluates, and chromatin immuno-precipitation (ChIP)-qPCR.ResultsSeveral TFs showed differential allelic binding to a 50bp DNA probe spanning rs4648889. Binding was increased to the AS-risk A allele for IKZF3 (aiolos) in nuclear extracts from CD8+ T-cells (3.7-fold, p<0.03) and several components of the NUcleosome Remodeling Deacetylase (NuRD) complex, including Chromodomain-Helicase-DNA-binding protein 4 (3.6-fold, p<0.05) and Retinoblastoma-Binding Protein 4 (4.1-fold, p<0.02). In contrast, binding of interferon regulatory factor (IRF) 5 was increased to the AS-protective G allele. These results were confirmed by EMSA, WB and ChIP-qPCR.ConclusionsThe association of AS with rs4648889 most likely results from its influence on the binding of this enhancer-like region to TFs, including IRF5, IKZF3 and members of the NuRD complex. Further investigation of these factors and RUNX3-related pathways may reveal important new therapeutic possibilities in AS.


Author(s):  
Mengyao Yu ◽  
Sergiy Kyryachenko ◽  
Stephanie Debette ◽  
Philippe Amouyel ◽  
Jean-Jacques Schott ◽  
...  

Background: Mitral valve prolapse (MVP) is a common cardiac valve disease, which affects 1 in 40 in the general population. Previous genome-wide association study have identified 6 risk loci for MVP. But these loci explained only partially the genetic risk for MVP. We aim to identify additional risk loci for MVP by adding data set from the UK Biobank. Methods: We reanalyzed 1007/479 cases from the MVP-France study, 1469/862 controls from the MVP-Nantes study for reimputation genotypes using HRC and TOPMed panels. We also incorporated 434 MVP cases and 4527 controls from the UK Biobank for discovery analyses. Genetic association was conducted using SNPTEST and meta-analyses using METAL. We used FUMA for post-genome-wide association study annotations and MAGMA for gene-based and gene-set analyses. Results: We found TOPMed imputation to perform better in terms of accuracy in the lower ranges of minor allele frequency below 0.1. Our updated meta-analysis included UK Biobank study for ≈8 million common single-nucleotide polymorphisms (minor allele frequency >0.01) and replicated the association on Chr2 as the top association signal near TNS1 . We identified an additional risk locus on Chr1 ( SYT2 ) and 2 suggestive risk loci on chr8 ( MSRA ) and chr19 ( FBXO46 ), all driven by common variants. Gene-based association using MAGMA revealed 6 risk genes for MVP with pronounced expression levels in cardiovascular tissues, especially the heart and globally part of enriched GO terms related to cardiac development. Conclusions: We report an updated meta-analysis genome-wide association study for MVP using dense imputation coverage and an improved case-control sample. We describe several loci and genes with MVP spanning biological mechanisms highly relevant to MVP, especially during valve and heart development.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Yuqi Zhao ◽  
Sander M van der Laan ◽  
Hester M den Ruijter ◽  
Saskia Haitjema ◽  
Gerard Pasterkamp ◽  
...  

Introduction: The composition of atherosclerotic plaques differs between individuals and contributes to the incidence of cardiovascular events. A better understanding of the biology underlying variability in plaque composition will provide insights into the progression of cardiovascular diseases. We carried out genome-wide association studies (GWAS) to investigate the genetic underpinnings of the plaque. Methods: We included carotid endarterectomy patients from the Athero-Express Biobank Study (n = 1,439). We quantified the percentage of macrophages and smooth muscle cells, the number of intraplaque vessels, the amount of collagen and calcification, the atheroma size, and the presence of plaque hemorrhage. GWAS was performed for all 9 plaque traits, and combined with summary level from GWAS consortia data on coronary artery disease (CAD), and ischemic stroke. Next, these data were integrated with data from human expression quantitative trait loci analyses, and pathway analyses of the plaque traits. Results: No individual locus reached genome-wide significance, likely due to the moderate sample size involved. However, it is plausible that perturbations of diverse pathways by a large number of genetic loci with small effects together contribute to the regulation of plaque composition. We identified 42-97 pathways significantly associated with each plaque phenotype, with many specific to each trait, supporting the presence of unique genetic components of individual plaque phenotypes. We also detected 39 pathways associated with at least four plaque phenotypes, among which were CAD-associated processes such as “extracellular matrix”, “complement and coagulation cascades” and stroke-associated pathways such as “Toll-like receptor signaling”. Interestingly, we found that smooth muscle cell percentage and atheroma size shared more genetic loci and pathways with intraplaque hemorrhage (such as “Sphingolipid metabolism”); the latter trait is associated with secondary cardiovascular events. Conclusion: There are genetic correlations among plaque phenotypes as well as between plaque phenotypes that provide mechanistic insight into the composition of the plaque and progression to secondary events.


Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1269-1280 ◽  
Author(s):  
M. Tanaka ◽  
Z. Chen ◽  
S. Bartunkova ◽  
N. Yamasaki ◽  
S. Izumo

Csx/Nkx2.5 is a vertebrate homeobox gene with a sequence homology to the Drosophila tinman, which is required for the dorsal mesoderm specification. Recently, heterozygous mutations of this gene were found to cause human congenital heart disease (Schott, J.-J., Benson, D. W., Basson, C. T., Pease, W., Silberbach, G. M., Moak, J. P., Maron, B. J., Seidman, C. E. and Seidman, J. G. (1998) Science 281, 108–111). To investigate the functions of Csx/Nkx2.5 in cardiac and extracardiac development in the vertebrate, we have generated and analyzed mutant mice completely null for Csx/Nkx2.5. Homozygous null embryos showed arrest of cardiac development after looping and poor development of blood vessels. Moreover, there were severe defects in vascular formation and hematopoiesis in the mutant yolk sac. Interestingly, TUNEL staining and PCNA staining showed neither enhanced apoptosis nor reduced cell proliferation in the mutant myocardium. In situ hybridization studies demonstrated that, among 20 candidate genes examined, expression of ANF, BNP, MLC2V, N-myc, MEF2C, HAND1 and Msx2 was disturbed in the mutant heart. Moreover, in the heart of adult chimeric mice generated from Csx/Nkx2.5 null ES cells, there were almost no ES cell-derived cardiac myocytes, while there were substantial contributions of Csx /Nkx2.5-deficient cells in other organs. Whole-mount β-gal staining of chimeric embryos showed that more than 20% contribution of Csx/Nkx2. 5-deficient cells in the heart arrested cardiac development. These results indicate that (1) the complete null mutation of Csx/Nkx2.5 did not abolish initial heart looping, (2) there was no enhanced apoptosis or defective cell cycle entry in Csx/Nkx2.5 null cardiac myocytes, (3) Csx/Nkx2.5 regulates expression of several essential transcription factors in the developing heart, (4) Csx/Nkx2.5 is required for later differentiation of cardiac myocytes, (5) Csx/Nkx2. 5 null cells exert dominant interfering effects on cardiac development, and (6) there were severe defects in yolk sac angiogenesis and hematopoiesis in the Csx/Nkx2.5 null embryos.


Sign in / Sign up

Export Citation Format

Share Document