scholarly journals Lineage-defined leiomyosarcoma subtypes emerge years before diagnosis and determine patient survival

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathaniel D. Anderson ◽  
Yael Babichev ◽  
Fabio Fuligni ◽  
Federico Comitani ◽  
Mehdi Layeghifard ◽  
...  

AbstractLeiomyosarcomas (LMS) are genetically heterogeneous tumors differentiating along smooth muscle lines. Currently, LMS treatment is not informed by molecular subtyping and is associated with highly variable survival. While disease site continues to dictate clinical management, the contribution of genetic factors to LMS subtype, origins, and timing are unknown. Here we analyze 70 genomes and 130 transcriptomes of LMS, including multiple tumor regions and paired metastases. Molecular profiling highlight the very early origins of LMS. We uncover three specific subtypes of LMS that likely develop from distinct lineages of smooth muscle cells. Of these, dedifferentiated LMS with high immune infiltration and tumors primarily of gynecological origin harbor genomic dystrophin deletions and/or loss of dystrophin expression, acquire the highest burden of genomic mutation, and are associated with worse survival. Homologous recombination defects lead to genome-wide mutational signatures, and a corresponding sensitivity to PARP trappers and other DNA damage response inhibitors, suggesting a promising therapeutic strategy for LMS. Finally, by phylogenetic reconstruction, we present evidence that clones seeding lethal metastases arise decades prior to LMS diagnosis.

Author(s):  
Navnit S. Makaram ◽  
Stuart H. Ralston

Abstract Purpose of Review To provide an overview of the role of genes and loci that predispose to Paget’s disease of bone and related disorders. Recent Findings Studies over the past ten years have seen major advances in knowledge on the role of genetic factors in Paget’s disease of bone (PDB). Genome wide association studies have identified six loci that predispose to the disease whereas family based studies have identified a further eight genes that cause PDB. This brings the total number of genes and loci implicated in PDB to fourteen. Emerging evidence has shown that a number of these genes also predispose to multisystem proteinopathy syndromes where PDB is accompanied by neurodegeneration and myopathy due to the accumulation of abnormal protein aggregates, emphasising the importance of defects in autophagy in the pathogenesis of PDB. Summary Genetic factors play a key role in the pathogenesis of PDB and the studies in this area have identified several genes previously not suspected to play a role in bone metabolism. Genetic testing coupled to targeted therapeutic intervention is being explored as a way of halting disease progression and improving outcome before irreversible skeletal damage has occurred.


2003 ◽  
Vol 90 (07) ◽  
pp. 36-42 ◽  
Author(s):  
Esther Eschenfelder ◽  
Karlheinz Peter ◽  
Burton Sobel ◽  
Christoph Bode ◽  
Thomas Nordt

SummaryIncreased PAI-1 expression has been implicated in accelerating atherogenesis. Increases under some conditions are modulated by growth factors. Genetic factors such as the 4G/5G poly-morphism in the promoter of the PAI-1 gene play a role under certain circumstances. The present study was designed to delineate for the first time interactions between growth factors and the 4G/5G polymorphism with respect to PAI-1 expression in human arterial smooth muscle cells (HASMC).HASMC were genotyped and exposed to growth factors. PAI-1 gene and protein expression were induced consistently by TGF-β (up to 4.0-fold), PDGF (2.1-fold),TNF-α (1.7-fold), and thrombin (2.3-fold). Results were similar regardless of which genotype (4G/4G [n=9], 4G/5G [n=13], and 5G/5G [n=7]) was present.The induction of increased PAI-1 expression in human arterial smooth muscle cells by growth factors implicated in accelerated atherogenesis is independent of the PAI-1 4G/5G polymorphism. Accordingly, modulation of PAI-1 expression is likely to be influenced predominantly by environmental factors acting on, rather than genetic factors intrinsic to the PAI-1 promoter.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Tai-Ming Ko ◽  
Tsong-Hai Lee Lee ◽  
Chien-Hsiun Chen ◽  
Yuan-Tsong Chen ◽  
Jer-Yuarn Wu

Introduction: Although family history studies in ischemic stroke support that genetic factors may be involved in the pathogenesis of two major subtypes of ischemia stroke: large-artery atherosclerosis (LAA) and small-vessel occlusion (SVO), it is still unclear which particular genetic factors contribute to LAA or SVO. Hypothesis: Because the etiology of ischemic stroke is heterogeneous, we hypothesize that genetic factors may vary by etiologic subtypes or ethnicities. Thus, we aim to identify genetic factors that contribute to LAA or SVO based on two independent Han Chinese populations. Methods: Novel genetic variants that predispose individuals to LAA and SVO were identified by genome-wide association study comprising of 824 individuals (including 444 LAA cases and 380 SVO cases) and 1,727 controls in a Han Chinese population residing in Taiwan. The LAA study was replicated in an independent Han Chinese population comprising of an additional 319 LAA cases and 1,802 controls. Results: In LAA cases, from two independent populations, we identified five single-nucleotide polymorphisms (SNPs), including SNP-1 (P = 3.10 х 10–8), SNP-2 (P = 4.00 х 10–9), SNP-3 (P = 3.57 х 10–8), SNP-4 (P = 1.76 х 10–8), and SNP-5 (P = 2.92 х 10–8), at one novel locus on chromosome 14q13.3 within PTCSC3 (encoding papillary thyroid carcinoma susceptibility candidate 3). In SVO cases, from the discovery stage, we identified two novel candidate susceptibility loci on chromosome 3p25.3 (SNP-6, P = 3.24 х 10–5) and chromosome 14 q31.1 (SNP-7, P = 2.58 х 10–4). Conclusions: For LAA, the newly identified SNPs within PTCSC3 gene were found to have genome-wide statistical significance (P < 5 х 10–8) and were shown to be located in a risk locus correlated with papillary thyroid carcinoma. Moreover, the genetic association between PTCSC3 gene and SVO was not identified, which suggested that PTCSC3 is a specific susceptibility locus for LAA. For SVO, we identified two novel candidate genetic loci which were valuable for replication by an independent population with SVO. In conclusion, our findings provide insights into the genetic basis of LAA and SVO, which may be applicable in the study of the pathogenesis of ischemic stroke and in the development of alternative therapeutic interventions.


2021 ◽  
Vol 23 ◽  
Author(s):  
Pei He ◽  
Rong- Rong Cao ◽  
Fei- Yan Deng ◽  
Shu- Feng Lei

Background: Immune and skeletal systems physiologically and pathologically interact with each other. The immune and skeletal diseases may share potential pleiotropic genetics factors, but the shared specific genes are largely unknown Objective: This study aimed to investigate the overlapping genetic factors between multiple diseases (including rheumatoid arthritis (RA), psoriasis, osteoporosis, osteoarthritis, sarcopenia and fracture) Methods: The canonical correlation analysis (metaCCA) approach was used to identify the shared genes for six diseases by integrating genome-wide association study (GWAS)-derived summary statistics. Versatile Gene-based Association Study (VEGAS2) method was further applied to refine and validate the putative pleiotropic genes identified by metaCCA. Results: About 157 (p<8.19E-6), 319 (p<3.90E-6) and 77 (p<9.72E-6) potential pleiotropic genes were identified shared by two immune disease, four skeletal diseases, and all of the six diseases, respectively. The top three significant putative pleiotropic genes shared by both immune and skeletal diseases, including HLA-B, TSBP1 and TSBP1-AS1 (p<E-300) were located in the major histocompatibility complex (MHC) region. Nineteen of 77 putative pleiotropic genes identified by metaCCA analysis were associated with at least one disease in the VEGAS2 analysis. Specifically, majority (18) of these 19 putative validated pleiotropic genes were associated with RA. Conclusion: The metaCCA method identified some pleiotropic genes shared by the immune and skeletal diseases. These findings help to improve our understanding of the shared genetic mechanisms and signaling pathways underlying immune and skeletal diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Kiyohiro Ando ◽  
Verna Cázares-Ordoñez ◽  
Makoto Makishima ◽  
Atsushi Yokoyama ◽  
Yusuke Suenaga ◽  
...  

Checkpoint kinase 1 (CHK1) plays a key role in genome surveillance and integrity throughout the cell cycle. Selective inhibitors of CHK1 (CHK1i) are undergoing clinical evaluation for various human malignancies, including neuroblastoma. Recently, we reported that CHK1i, PF-477736, induced a p53-mediated DNA damage response. As a result, the cancer cells were able to repair DNA damage and became less sensitive to CHK1i. In this study, we discovered that PF-477736 increased expression of MDM2 oncogene along with CHK1i-induced replication defects in neuroblastoma NB-39-nu cells. A mass spectrometry analysis of protein binding to MDM2 in the presence of CHK1i identified the centrosome-associated family protein 131 (CEP131), which was correlated with unfavorable prognosis of neuroblastoma patients. We revealed that MDM2 was associated with CEP131 protein degradation, whereas overexpression of CEP131 accelerated neuroblastoma cell growth and exhibited resistance to CHK1i-induced replication defects. Thus, these findings may provide a future therapeutic strategy against centrosome-associated oncogenes involving CEP131 as a target in neuroblastoma.


2012 ◽  
Vol 215 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Georg Homuth ◽  
Alexander Teumer ◽  
Uwe Völker ◽  
Matthias Nauck

The metabolome, defined as the reflection of metabolic dynamics derived from parameters measured primarily in easily accessible body fluids such as serum, plasma, and urine, can be considered as the omics data pool that is closest to the phenotype because it integrates genetic influences as well as nongenetic factors. Metabolic traits can be related to genetic polymorphisms in genome-wide association studies, enabling the identification of underlying genetic factors, as well as to specific phenotypes, resulting in the identification of metabolome signatures primarily caused by nongenetic factors. Similarly, correlation of metabolome data with transcriptional or/and proteome profiles of blood cells also produces valuable data, by revealing associations between metabolic changes and mRNA and protein levels. In the last years, the progress in correlating genetic variation and metabolome profiles was most impressive. This review will therefore try to summarize the most important of these studies and give an outlook on future developments.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Ho-Ryun Chung ◽  
Chao Xu ◽  
Alisa Fuchs ◽  
Andreas Mund ◽  
Martin Lange ◽  
...  

PHF13 is a chromatin affiliated protein with a functional role in differentiation, cell division, DNA damage response and higher chromatin order. To gain insight into PHF13's ability to modulate these processes, we elucidate the mechanisms targeting PHF13 to chromatin, its genome wide localization and its molecular chromatin context. Size exclusion chromatography, mass spectrometry, X-ray crystallography and ChIP sequencing demonstrate that PHF13 binds chromatin in a multivalent fashion via direct interactions with H3K4me2/3 and DNA, and indirectly via interactions with PRC2 and RNA PolII. Furthermore, PHF13 depletion disrupted the interactions between PRC2, RNA PolII S5P, H3K4me3 and H3K27me3 and resulted in the up and down regulation of genes functionally enriched in transcriptional regulation, DNA binding, cell cycle, differentiation and chromatin organization. Together our findings argue that PHF13 is an H3K4me2/3 molecular reader and transcriptional co-regulator, affording it the ability to impact different chromatin processes.


Sign in / Sign up

Export Citation Format

Share Document