scholarly journals Modulation of NKG2D, NKp46, and Ly49C/I facilitates natural killer cell-mediated control of lung cancer

2018 ◽  
Vol 115 (46) ◽  
pp. 11808-11813 ◽  
Author(s):  
Lei Shi ◽  
Kang Li ◽  
Yizhan Guo ◽  
Anirban Banerjee ◽  
Qing Wang ◽  
...  

Natural killer (NK) cells play a critical role in controlling malignancies. Susceptibility or resistance to lung cancer, for example, specifically depends on NK cell function. Nevertheless, intrinsic factors that control NK cell-mediated clearance of lung cancer are unknown. Here we report that NK cells exposed to exogenous major histocompatibility class I (MHCI) provide a significant immunologic barrier to the growth and progression of malignancy. Clearance of lung cancer is facilitated by up-regulation of NKG2D, NKp46, and other activating receptors upon exposure to environmental MHCI. Surface expression of the inhibitory receptor Ly49C/I, on the other hand, is down-regulated upon exposure to tumor-bearing tissue. We thus demonstrate that NK cells exhibit dynamic plasticity in surface expression of both activating and inhibitory receptors based on the environmental context. Our data suggest that altering the activation state of NK cells may contribute to immunologic control of lung and possibly other cancers.

Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1309-1317 ◽  
Author(s):  
Jumei Shi ◽  
Guido J. Tricot ◽  
Tarun K. Garg ◽  
Priyangi A. Malaviarachchi ◽  
Susann M. Szmania ◽  
...  

AbstractHuman leukocyte antigen class I molecules expressed by tumor cells play a central role in the regulation of natural killer (NK) cell–mediated immune responses. The proteasome inhibitor bortezomib has demonstrated significant activity in multiple myeloma (MM). We hypothesized that treatment of MM with bortezomib results in the reduction of cell-surface expression of class I and thereby sensitizes MM to NK cell–mediated lysis. Here we report that bortezomib down-regulates class I in a time- and dose-dependent fashion on all MM cell lines and patient MM cells tested. Downregulation of class I can also be induced in vivo after a single dose of 1.0 mg/m2 bortezomib. Bortezomib significantly enhances the sensitivity of patient myeloma to allogeneic and autologous NK cell–mediated lysis. Further, the level of decrease in class I expression correlates with increased susceptibility to lysis by NK cells. Clinically relevant bortezomib concentrations do not affect NK-cell function. Our findings have clear therapeutic implications for MM and other NK cell–sensitive malignancies in the context of both allogeneic and autologous adoptively transferred NK cells.


Author(s):  
Pil Soo Sung ◽  
Jeong Won Jang

Hepatocellular carcinoma (HCC) is currently the third leading cause of malignancy-related mortalities worldwide. Natural killer (NK) cells are involved in the critical role of first line immunological defense against cancer development. Defects in NK cell functions are recognized as important mechanisms for immune evasion of tumor cells. NK cell function appears to be attenuated in HCC, and many previous reports suggested that NK cells play a critical role in controlling HCC, suggesting that boosting the activity of dysfunctional NK cells can enhance tumor cell killing. However, the detailed mechanisms of NK cell dysfunction in tumor microenvironment of HCC remain largely unknown. A better understanding of the mechanisms of NK cell dysfunction in HCC will help in the NK cell-mediated eradication of cancer cells and prolong patient survival. In this review, we describe the various mechanisms underlying NK cell dysfunction in HCC. Further, we summarize current advances in the approaches to enhance endogenous NK cell function and in adoptive NK cell therapies, to cure this difficult-to-treat cancer.


2018 ◽  
Vol 19 (11) ◽  
pp. 3648 ◽  
Author(s):  
Pil Soo Sung ◽  
Jeong Won Jang

Hepatocellular carcinoma (HCC) is currently the third leading cause of malignancy-related mortalities worldwide. Natural killer (NK) cells are involved in the critical role of first line immunological defense against cancer development. Defects in NK cell functions are recognized as important mechanisms for immune evasion of tumor cells. NK cell function appears to be attenuated in HCC, and many previous reports suggested that NK cells play a critical role in controlling HCC, suggesting that boosting the activity of dysfunctional NK cells can enhance tumor cell killing. However, the detailed mechanisms of NK cell dysfunction in tumor microenvironment of HCC remain largely unknown. A better understanding of the mechanisms of NK cell dysfunction in HCC will help in the NK cell-mediated eradication of cancer cells and prolong patient survival. In this review, we describe the various mechanisms underlying human NK cell dysfunction in HCC. Further, we summarize current advances in the approaches to enhance endogenous NK cell function and in adoptive NK cell therapies, to cure this difficult-to-treat cancer.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hee Young Na ◽  
Yujun Park ◽  
Soo Kyung Nam ◽  
Jiwon Koh ◽  
Yoonjin Kwak ◽  
...  

Abstract Background Natural killer (NK) cells mediate the anti-tumoral immune response as an important component of innate immunity. The aim of this study was to investigate the prognostic significance and functional implication of NK cell-associated surface receptors in gastric cancer (GC) by using multiplex immunohistochemistry (mIHC). Methods We performed an mIHC on tissue microarray slides, including 55 GC tissue samples. A total of 11 antibodies including CD57, NKG2A, CD16, HLA-E, CD3, CD20, CD45, CD68, CK, SMA, and ki-67 were used. CD45 + CD3-CD57 + cells were considered as CD57 + NK cells. Results Among CD45 + immune cells, the proportion of CD57 + NK cell was the lowest (3.8%), whereas that of CD57 + and CD57- T cells (65.5%) was the highest, followed by macrophages (25.4%), and B cells (5.3%). CD57 + NK cells constituted 20% of CD45 + CD57 + immune cells while the remaining 80% were CD57 + T cells. The expression of HLA-E in tumor cells correlated with that in tumoral T cells, B cells, and macrophages, but not CD57 + NK cells. The higher density of tumoral CD57 + NK cells and tumoral CD57 + NKG2A + NK cells was associated with inferior survival. Conclusions Although the number of CD57 + NK cells was lower than that of other immune cells, CD57 + NK cells and CD57 + NKG2A + NK cells were significantly associated with poor outcomes, suggesting that NK cell subsets play a critical role in GC progression. NK cells and their inhibitory receptor, NKG2A, may be potential targets in GC.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 690-690 ◽  
Author(s):  
Joseph S. Palumbo ◽  
Kathryn E. Talmage ◽  
Jessica V. Massari ◽  
Christine M. La Jeunesse ◽  
Matthew J. Flick ◽  
...  

Abstract A linkage between hemostatic system components and tumor cell metastatic potential has been well established, but the underlying mechanism(s) by which various circulating and cell-associated coagulation factors and platelets promote tumor cell dissemination remains to be fully defined. One potential mechanism by which tumor cell-associated microthrombi might enhance metastatic potential is by interfering with the cytolytic elimination of tumor cell emboli by natural killer (NK) cells. In order to explore this hypothesis, we studied tumor dissemination in mice lacking either fibrinogen or Gαq, a G protein critical for platelet activation. Comparative studies of experimental lung metastasis in control and Gαq−/− mice showed that loss of platelet activation resulted in a two-orders-of-magnitude decrease in pulmonary metastatic foci formed by either Lewis lung carcinoma or B16 melanoma. The difference in metastatic success was not the result of differences in tumor growth rate, as tumors transplanted into the dorsal subcutis of Gαq−/− and wildtype animals grew at similar rates. Rather, tumor cell fate analyses using radiolabeled tumor cells showed that the survival of tumor cells within the lung was significantly improved in mice that retained platelet activation function relative to Gαq−/− mice with a profound platelet activation defect. In order to examine the potential interplay between platelet activation and natural killer cell function, we compared pulmonary tumor cell survival in cohorts of control and Gαq−/− mice immuno-depleted of NK cells with an anti-asialo GM1 antibody. Remarkably, platelet function was no longer a determinant of metastatic potential in mice lacking NK cells. Given that fibrin(ogen) is also an established determinant of metastatic success we explored whether the influence of this key hemostatic factor on tumor cell dissemination was also mechanistically-coupled to natural killer cell function. We interbred fibrinogen-deficient mice with Gz-Ly49A transgenic mice known to have a constitutive deficit in NK cells. In those cohorts of mice with normal NK cells, we affirmed the earlier finding that fibrinogen deficiency resulted in a significant diminution in metastatic potential. However, consistent with our findings in mice with defective platelet activation, fibrinogen was found to no longer be a determinant of metastatic potential in mice lacking NK cells. These data establish another important link between innate immune surveillance and the hemostatic system. Further, it appears that at least one mechanism by which tumor cell-associated microthrombi increase metastatic potential is by restricting NK cell-mediated tumor cell elimination. Given that NK cell cytotoxicity requires direct contact with any target cell, one attractive model presently being explored is that tumor cell-associated platelets physically block NK cell access to tumor cell emboli.


Blood ◽  
2010 ◽  
Vol 116 (13) ◽  
pp. 2286-2294 ◽  
Author(s):  
Don M. Benson ◽  
Courtney E. Bakan ◽  
Anjali Mishra ◽  
Craig C. Hofmeister ◽  
Yvonne Efebera ◽  
...  

Abstract T-cell expression of programmed death receptor-1 (PD-1) down-regulates the immune response against malignancy by interacting with cognate ligands (eg, PD-L1) on tumor cells; however, little is known regarding PD-1 and natural killer (NK) cells. NK cells exert cytotoxicity against multiple myeloma (MM), an effect enhanced through novel therapies. We show that NK cells from MM patients express PD-1 whereas normal NK cells do not and confirm PD-L1 on primary MM cells. Engagement of PD-1 with PD-L1 should down-modulate the NK-cell versus MM effect. We demonstrate that CT-011, a novel anti–PD-1 antibody, enhances human NK-cell function against autologous, primary MM cells, seemingly through effects on NK-cell trafficking, immune complex formation with MM cells, and cytotoxicity specifically toward PD-L1+ MM tumor cells but not normal cells. We show that lenalidomide down-regulates PD-L1 on primary MM cells and may augment CT-011's enhancement of NK-cell function against MM. We demonstrate a role for the PD-1/PD-L1 signaling axis in the NK-cell immune response against MM and a role for CT-011 in enhancing the NK-cell versus MM effect. A phase 2 clinical trial of CT-011 in combination with lenalidomide for patients with MM should be considered.


2021 ◽  
Author(s):  
Melanie A MacMullan ◽  
Pin Wang ◽  
Nicholas Alexander Graham

Natural killer (NK) cells are cytotoxic lymphocytes that play a critical role in the innate immune system. Although cytokine signaling is crucial for the development, expansion, and cytotoxicity of NK cells, the signaling pathways stimulated by cytokines are not well understood. Here, we sought to compare the early signaling dynamics induced by the cytokines interleukin (IL)-2 and IL-15 using liquid chromatography-mass spectrometry (LC-MS)-based phospho-proteomics. Following stimulation of the immortalized NK cell line NK-92 with IL-2 or IL-15 for 5, 10, 15, or 30 minutes, we identified 8,692 phospho-peptides from 3,023 proteins. Comparing the kinetic profiles of 3,619 fully quantified phospho-peptides, we found that IL-2 and IL-15 induced highly similar signaling in NK-92 cells. Among the IL-2/IL-15-regulated phospho-sites were both well-known signaling events like the JAK/STAT pathway and novel signaling events with potential functional significance including LCP1 Ser5, PAK2 Ser141, and STK17B Ser12. Using bioinformatic approaches, we sought to identify kinases regulated by IL-2/IL-15 stimulation and found that the p90 ribosomal S6 kinase (p90RSK) family was activated by both cytokines. Using pharmacological inhibitors, we then discovered that RSK signaling is required for IL-2 and IL-15-induced proliferation in NK-92 cells. Taken together, our analysis represents the first phospho-proteomic characterization of cytokine signaling in NK cells and increases our understanding of how cytokine signaling regulates NK cell function.


2020 ◽  
Vol 21 (24) ◽  
pp. 9499
Author(s):  
Dong Oh Kim ◽  
Jae-Eun Byun ◽  
Won Sam Kim ◽  
Mi Jeong Kim ◽  
Jung Ha Choi ◽  
...  

The function of natural killer (NK) cell-derived interferon-γ (IFN-γ) expands to remove pathogens by increasing the ability of innate immune cells. Here, we identified the critical role of thioredoxin-interacting protein (TXNIP) in the production of IFN-γ in NK cells during bacterial infection. TXNIP inhibited the production of IFN-γ and the activation of transforming growth factor β-activated kinase 1 (TAK1) activity in primary mouse and human NK cells. TXNIP directly interacted with TAK1 and inhibited TAK1 activity by interfering with the complex formation between TAK1 and TAK1 binding protein 1 (TAB1). Txnip−/− (KO) NK cells enhanced the activation of macrophages by inducing IFN-γ production during Pam3CSK4 stimulation or Staphylococcus aureus (S. aureus) infection and contributed to expedite the bacterial clearance. Our findings suggest that NK cell-derived IFN-γ is critical for host defense and that TXNIP plays an important role as an inhibitor of NK cell-mediated macrophage activation by inhibiting the production of IFN-γ during bacterial infection.


1990 ◽  
Vol 272 (2) ◽  
pp. 327-331 ◽  
Author(s):  
M M Whalen ◽  
A D Bankhurst

Membranes from highly purified natural killer (NK) cells were ADP-ribosylated by treatment with cholera toxin (CTX). CTX resulted in a single band of specific 32P incorporation at Mr 43,600. CTX treatment of intact NK cells caused a 9-fold increase in cyclic AMP (cAMP) concentrations. Pretreatment of NK cells with CTX diminished their ability to lyse K562 tumour cells by up to 79%. Forskolin treatment elevated NK cell cAMP levels 8-fold and decreased lysis of K562 cells by up to 45%. Adrenaline and isoprenaline (isoproterenol) both inhibited lysis of K562 cells by approx. 35% and elevated cAMP by at least 2.5-fold, and their inhibition of lysis was reversed by propranolol. These data suggest that the stimulatory guanine-nucleotide-binding protein GS coupled to beta-adrenergic receptors is involved in transducing signals which inhibit NK cell lysis of tumour cells. CTX and forskolin also diminish the ability of NK cells to bind K562 cells (binding is necessary for lysis). This suggests that the NK-cell receptor(s) for the tumour cell may be altered as a consequence of cAMP-mediated events or by activation of GS.


2011 ◽  
Vol 286 (27) ◽  
pp. 24142-24149 ◽  
Author(s):  
Stefanie Margraf-Schönfeld ◽  
Carolin Böhm ◽  
Carsten Watzl

2B4 (CD244) is an important activating receptor for the regulation of natural killer (NK) cell responses. Here we show that 2B4 is heavily and differentially glycosylated in primary human NK cells and NK cell lines. The differential glycosylation could be attributed to sialic acid residues on N- and O-linked carbohydrates. Using a recombinant fusion protein of the extracellular domain of 2B4, we demonstrate that N-linked glycosylation of 2B4 is essential for the binding to its ligand CD48. In contrast, sialylation of 2B4 has a negative impact on ligand binding, as the interaction between 2B4 and CD48 is increased after the removal of sialic acids. This was confirmed in a functional assay system, where the desialylation of NK cells or the inhibition of O-linked glycosylation resulted in increased 2B4-mediated lysis of CD48-expressing tumor target cells. These data demonstrate that glycosylation has an important impact on 2B4-mediated NK cell function and suggest that regulated changes in glycosylation during NK cell development and activation might be involved in the regulation of NK cell responses.


Sign in / Sign up

Export Citation Format

Share Document