scholarly journals Tetraspanins TSP-12 and TSP-14 function redundantly to regulate the trafficking of the type II BMP receptor in Caenorhabditis elegans

2020 ◽  
Vol 117 (6) ◽  
pp. 2968-2977
Author(s):  
Zhiyu Liu ◽  
Herong Shi ◽  
Anthony K. Nzessi ◽  
Anne Norris ◽  
Barth D. Grant ◽  
...  

Tetraspanins are a unique family of 4-pass transmembrane proteins that play important roles in a variety of cell biological processes. We have previously shown that 2 paralogous tetraspanins in Caenorhabditis elegans, TSP-12 and TSP-14, function redundantly to promote bone morphogenetic protein (BMP) signaling. The underlying molecular mechanisms, however, are not fully understood. In this study, we examined the expression and subcellular localization patterns of endogenously tagged TSP-12 and TSP-14 proteins. We found that TSP-12 and TSP-14 share overlapping expression patterns in multiple cell types, and that both proteins are localized on the cell surface and in various types of endosomes, including early, late, and recycling endosomes. Animals lacking both TSP-12 and TSP-14 exhibit reduced cell-surface levels of the BMP type II receptor DAF-4/BMPRII, along with impaired endosome morphology and mislocalization of DAF-4/BMPRII to late endosomes and lysosomes. These findings indicate that TSP-12 and TSP-14 are required for the recycling of DAF-4/BMPRII. Together with previous findings that the type I receptor SMA-6 is recycled via the retromer complex, our work demonstrates the involvement of distinct recycling pathways for the type I and type II BMP receptors and highlights the importance of tetraspanin-mediated intracellular trafficking in the regulation of BMP signaling in vivo. As TSP-12 and TSP-14 are conserved in mammals, our findings suggest that the mammalian TSP-12 and TSP-14 homologs may also function in regulating transmembrane protein recycling and BMP signaling.

2004 ◽  
Vol 286 (5) ◽  
pp. L1045-L1054 ◽  
Author(s):  
Jason M. Roper ◽  
Dawn J. Mazzatti ◽  
Richard H. Watkins ◽  
William M. Maniscalco ◽  
Peter C. Keng ◽  
...  

It is well established that hyperoxia injures and kills alveolar endothelial and type I epithelial cells of the lung. Although type II epithelial cells remain morphologically intact, it remains unclear whether they are also damaged. DNA integrity was investigated in adult mice whose type II cells were identified by their endogenous expression of pro-surfactant protein C or transgenic expression of enhanced green fluorescent protein. In mice exposed to room air, punctate perinuclear 8-oxoguanine staining was detected in ∼4% of all alveolar cells and in 30% of type II cells. After 48 or 72 h of hyperoxia, 8-oxoguanine was detected in 11% of all alveolar cells and in >60% of type II cells. 8-Oxoguanine colocalized by confocal microscopy with the mitochondrial transmembrane protein cytochrome oxidase subunit 1. Type II cells isolated from hyperoxic lungs exhibited nuclear DNA strand breaks by comet assay even though they were viable and morphologically indistinguishable from cells isolated from lungs exposed to room air. These data reveal that type II cells exposed to in vivo hyperoxia have oxidized and fragmented DNA. Because type II cells are essential for lung remodeling, our findings raise the possibility that they are proficient in DNA repair.


2015 ◽  
Vol 29 (1) ◽  
pp. 140-152 ◽  
Author(s):  
Mai Fujimoto ◽  
Satoshi Ohte ◽  
Kenji Osawa ◽  
Arei Miyamoto ◽  
Sho Tsukamoto ◽  
...  

Abstract Fibrodysplasia ossificans progressiva (FOP) is a genetic disorder characterized by progressive heterotopic ossification in soft tissues, such as the skeletal muscles. FOP has been shown to be caused by gain-of-function mutations in activin receptor-like kinase (ALK)-2, which is a type I receptor for bone morphogenetic proteins (BMPs). In the present study, we examined the molecular mechanisms that underlie the activation of intracellular signaling by mutant ALK2. Mutant ALK2 from FOP patients enhanced the activation of intracellular signaling by type II BMP receptors, such as BMPR-II and activin receptor, type II B, whereas that from heart disease patients did not. This enhancement was dependent on the kinase activity of the type II receptors. Substitution mutations at all nine serine and threonine residues in the ALK2 glycine- and serine-rich domain simultaneously inhibited this enhancement by the type II receptors. Of the nine serine and threonine residues in ALK2, T203 was found to be critical for the enhancement by type II receptors. The T203 residue was conserved in all of the BMP type I receptors, and these residues were essential for intracellular signal transduction in response to ligand stimulation. The phosphorylation levels of the mutant ALK2 related to FOP were higher than those of wild-type ALK2 and were further increased by the presence of type II receptors. The phosphorylation levels of ALK2 were greatly reduced in mutants carrying a mutation at T203, even in the presence of type II receptors. These findings suggest that the mutant ALK2 related to FOP is enhanced by BMP type II receptors via the T203-regulated phosphorylation of ALK2.


Development ◽  
1998 ◽  
Vol 125 (3) ◽  
pp. 431-442 ◽  
Author(s):  
A. Frisch ◽  
C.V. Wright

Bone Morphogenetic Proteins (BMPs) are potent regulators of embryonic cell fate that are presumed to initiate signal transduction in recipient cells through multimeric, transmembrane, serine/threonine kinase complexes made up of type I and type II receptors. BMPRII was identified previously in mammals as the only type II receptor that binds BMPs, but not activin or TGFbeta, in vitro. We report the cloning and functional analysis in vivo of its Xenopus homolog, XBMPRII. XBMPRII is expressed maternally and zygotically in an initially unrestricted manner. Strikingly, XBMPRII transcripts then become restricted to the mesodermal precursors during gastrulation. Expression is lower in the dorsal organizer region, potentially providing a mechanism to suppress the actions of BMP4 on dorsally fated tissues. Similar to the results seen for a truncated type I BMP receptor (tBR), a dominant-negative form of XBMPRII (tBRII) can dorsalize ventral mesoderm, induce extensive secondary body axes, block mesoderm induction by BMP4 and directly neuralize ectoderm, strongly suggesting that XBMPRII mediates BMP signals in vivo. However, although both tBRII and tBR can induce partial secondary axes, marker analysis shows that tBRII-induced axes are more anteriorly extended. Additionally, coinjection of tBRII and tBR synergistically increases the incidence of secondary axis formation. A truncated activin type II receptor (deltaXAR1) is known to block both activin and BMP signaling in vivo. Here we show that such crossreactivity does not occur for tBRII, in that it does not affect activin signaling. Furthermore, our studies indicate that the full-length activin type II receptor (XAR1) overcomes a block in BMP4 signaling imposed by tBRII, implicating XAR1 as a common component of BMP and activin signaling pathways in vivo. These data implicate XBMPRII as a type II receptor with high selectivity for BMP signaling, and therefore as a critical mediator of the effects of BMPs as mesodermal patterning agents and suppressors of neural fate during embryogenesis.


Blood ◽  
2008 ◽  
Vol 111 (10) ◽  
pp. 5195-5204 ◽  
Author(s):  
Yin Xia ◽  
Jodie L. Babitt ◽  
Yisrael Sidis ◽  
Raymond T. Chung ◽  
Herbert Y. Lin

Abstract Hemojuvelin (HJV) is a coreceptor for bone morphogenetic protein (BMP) signaling that regulates hepcidin expression and iron metabolism. However, the precise combinations of BMP ligands and receptors used by HJV remain unknown. HJV has also been demonstrated to bind to neogenin, but it is not known whether this interaction has a role in regulating hepcidin expression. In the present study, we show that BMP-2, BMP-4, and BMP-6 are endogenous ligands for HJV in hepatoma-derived cell lines, and that all 3 of these ligands are expressed in human liver. We demonstrate in vitro that HJV selectively uses the BMP type II receptors ActRIIA and BMPRII, but not ActRIIB, and HJV enhances utilization of ActRIIA by BMP-2 and BMP-4. Interestingly, ActRIIA is the predominant BMP type II receptor expressed in human liver. While HJV can use all 3 BMP type I receptors (ALK2, ALK3, and ALK6) in vitro, only ALK2 and ALK3 are detected in human liver. Finally, we show that HJV-induced BMP signaling and hepcidin expression are not altered by neogenin overexpression or by inhibition of endogenous neogenin expression. Thus, HJV-mediated BMP signaling and hepcidin regulation occur via a distinct subset of BMP ligands and BMP receptors, independently of neogenin.


2020 ◽  
Vol 21 (18) ◽  
pp. 6498
Author(s):  
Chen Xie ◽  
Wenjuan Jiang ◽  
Jerome J. Lacroix ◽  
Yun Luo ◽  
Jijun Hao

Activins transduce the TGF-β pathway through a heteromeric signaling complex consisting of type I and type II receptors, and activins also inhibit bone morphogenetic protein (BMP) signaling mediated by type I receptor ALK2. Recent studies indicated that activin A cross-activates the BMP pathway through ALK2R206H, a mutation associated with Fibrodysplasia Ossificans Progressiva (FOP). How activin A inhibits ALK2WT-mediated BMP signaling but activates ALK2R206H-mediated BMP signaling is not well understood, and here we offer some insights into its molecular mechanism. We first demonstrated that among four BMP type I receptors, ALK2 is the only subtype able to mediate the activin A-induced BMP signaling upon the dissociation of FKBP12. We further showed that BMP4 does not cross-signal TGF-β pathway upon FKBP12 inhibition. In addition, although the roles of type II receptors in the ligand-independent BMP signaling activated by FOP-associated mutant ALK2 have been reported, their roles in activin A-induced BMP signaling remains unclear. We demonstrated in this study that the known type II BMP receptors contribute to activin A-induced BMP signaling through their kinase activity. Together, the current study provided important mechanistic insights at the molecular level into further understanding physiological and pathophysiological BMP signaling.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 430-430
Author(s):  
Alessandro Dulja ◽  
Alessia Pagani ◽  
Mariateresa Pettinato ◽  
Antonella Nai ◽  
Clara Camaschella ◽  
...  

Introduction The liver hormone hepcidin is the master regulator of iron metabolism that modulates iron release into the circulation by binding and blocking the iron exporter ferroportin (Nemeth et al., 2004). Hepcidin expression is under the control of the BMP-SMAD pathway (Babitt et al., 2006), whose activation requires the formation of a hexameric complex composed of a dimer of BMP receptors type I (BMPR-Is), a dimer of BMPR type II (BMPR-IIs) and dimeric ligands. ALK2 and ALK3, as BMPR-Is (Steinbiecker et al., 2011), BMPR2 and ACVR2A, as BMPR-IIs (Mayeur et al., 2014), and BMP2 (Koch et al, 2017) and BMP6 (Meynard et al., 2009), as ligands, control hepcidin expression in vivo. We previously demonstrated that the immunophilin FKBP12 limits hepcidin expression in hepatocytes by binding ALK2 (Colucci et al., 2017). However, the molecular mechanism whereby FKBP12 regulates ALK2 and its relationship with BMPR-IIs and ligands in the regulation of the BMP-SMAD pathway and hepcidin expression are still unclear. Methods: BMPR-Is dimerization was evaluated by co-immunoprecipitation (CoIP) experiments performed in the HuH7 human hepatoma cell line. BMP-SMAD pathway and hepcidin promoter activation were analyzed by using a reporter vector with the luciferase under the control of BMP responsive elements or of the human hepcidin promoter, respectively. Endogenous hepcidin expression was measured by qRT-PCR. Results: Since BMPRIs act as dimers, we first tested whether FKBP12 modulates the dimerization process. MYC- and FLAG-tagged ALK2 or ALK3 were transfected in HuH7 cells in the presence of FKBP12. Cells were treated or not with tacrolimus (TAC), an immunosuppressive drug that sequesters FKBP12 from ALK2. FKBP12 promotes ALK2 homodimers, functionally inactive in the absence of ligands, with no effect on ALK3 homodimerization. TAC promotes increased ALK2 homodimerization and SMAD1/5/8 phosphorylation, demonstrating that in the absence of FKBP12, ALK2 homodimers are stabilized and functionally active. We next focused on BMP6, the physiologic ligand that binds preferentially ALK2 and plays a fundamental role in hepcidin regulation in vivo. In HuH7 cells transfected with FKBP12 and ALK2, BMP6 treatment reduced FKBP12-ALK2 binding and increased ALK2 homodimers. In agreement, SMAD1/5/8 phosphorylation was increased, indicating that FKBP12 displacement allows the formation of functional receptor complexes responsive to BMP6. BMPR-Is activate SMAD1/5/8 following BMPR-IIs phosphorylation. Since TAC induces SMAD1/5/8 phosphorylation in the absence of ligands, we hypothesized that FKBP12 displacement also affects the formation of BMPR-I/BMPR-II oligomers. HuH7 cells were transfected with ALK2, BMPR2 or ACVR2A and FKBP12, and treated or not with TAC. FKBP12 sequestration by TAC enhances the ALK2-BMPR2 and ALK2-ACVR2A interaction and accordingly activates SMAD1/5/8 signaling. Given that FKBP12 modulates BMP receptor interaction, we wondered how this functionally impacts on the response to BMP ligands, as BMP2, that guarantees basal hepcidin levels by binding ALK3, and BMP6, upregulated in iron overload that signals preferentially through ALK2. ALK3 upregulates the BMP pathway and hepcidin expression in a similar way in response to BMP2 and BMP6, in agreement with the evidence that both ligands bind ALK3. ALK2, which failed to activate the pathway in the absence ligands, leads to a greater response to BMP6, consistent with the fact that it is the BMP6 receptor. Thus FKBP12 quantitatively, rather than qualitatively, modulates the BMP-SMAD pathway activation in response to BMP ligands. Conclusions: Altogether our results clarify the molecular mechanisms of hepcidin regulation demonstrating that: 1) FKBP12 limits hepcidin expression by inducing the formation of inactive ALK2 homodimers in the absence of ligands. 2) Decreased FKBP12 binding to ALK2, by TAC or BMP6, favors the formation of active ALK2 homodimers. 3) FKBP12 sequestration increases the binding of ALK2 with the BMPR-IIs, thus favoring SMAD1/5/8 phosphorylation and pathway activation. 4) FKBP12 quantitatively modulates the response of BMPRIs to the ligands BMP2 and BMP6. Disclosures Camaschella: Vifor Iron Core: Consultancy; Celgene: Consultancy; Novartis: Consultancy.


2020 ◽  
Author(s):  
Valia Khodr ◽  
Paul Machillot ◽  
Elisa Migliorini ◽  
Jean-Baptiste Reiser ◽  
Catherine Picart

AbstractBone morphogenetic proteins (BMP) are an important family of growth factors playing a role in a large number of physiological and pathological processes, including bone homeostasis, tissue regeneration and cancers. In vivo, BMPs bind successively to both BMP receptors (BMPR) of type I and type II, and a promiscuity has been reported. In this study, we used bio-layer interferometry to perform parallel real-time biosensing and to deduce the kinetic parameters (ka, kd) and the equilibrium constant (KD) for a large range of BMPs/BMPR combinations in similar experimental conditions. We selected four members of the BMP family (BMP-2, 4, 7, 9) known for their physiological relevance and studied their interactions with five type-I BMP receptors (ALK1, 2, 3, 5, 6) and three type-II BMP receptors (BMPR-II, ACTR-IIA, ACTR-IIB). We reveal that BMP-2 and BMP-4 behave differently, especially regarding their kinetic interactions and affinities with the type-II BMPR. We found that BMP-7 has a higher affinity for ACTR-IIA and a tenfold lower affinity with the type-I receptors. While BMP-9 has a high and similar affinity for all type-II receptors, it can interact with ALK5 and ALK2, in addition to ALK1. Interestingly, we also found that all BMPs can interact with ALK5. The interaction between BMPs and both type-I and type II receptors immobilized on the same surface did not reveal further cooperativity. Our work provides a synthetic view of the interactions of these BMPs with their receptors and paves the way for future studies on their cell-type and receptor specific signaling pathways.


1995 ◽  
Vol 130 (1) ◽  
pp. 217-226 ◽  
Author(s):  
H Yamashita ◽  
P ten Dijke ◽  
D Huylebroeck ◽  
T K Sampath ◽  
M Andries ◽  
...  

Proteins in the TGF-beta superfamily transduce their effects through binding to type I and type II serine/threonine kinase receptors. Osteogenic protein-1 (OP-1, also known as bone morphogenetic protein-7 or BMP-7), a member of the TGF-beta superfamily which belongs to the BMP subfamily, was found to bind activin receptor type I (ActR-I), and BMP receptors type IA (BMPR-IA) and type IB (BMPR-IB) in the presence of activin receptors type II (ActR-II) and type IIB (ActR-IIB). The binding affinity of OP-1 to ActR-II was two- to threefold lower than that of activin A. A transcriptional activation signal was transduced after binding of OP-1 to the complex of ActR-I and ActR-II, or that of BMPR-IB and ActR-II. These results indicate that ActR-II can act as a functional type II receptor for OP-1, as well as for activins. Some of the known biological effects of activin were observed for OP-1, including growth inhibition and erythroid differentiation induction. Compared to activin, OP-1 was shown to be a poor inducer of mesoderm in Xenopus embryos. Moreover, follistatin, an inhibitor of activins, was found to inhibit the effects of OP-1, if added at a 10-fold excess. However, certain effects of activin, like induction of follicle stimulating hormone secretion in rat pituitary cells were not observed for OP-1. OP-1 has overlapping binding specificities with activins, and shares certain but not all of the functional effects of activins. Thus, OP-1 may have broader effects in vivo than hitherto recognized.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joel M. J. Tan ◽  
Monica E. Garner ◽  
James M. Regeimbal ◽  
Catherine J. Greene ◽  
Jorge D. Rojas Márquez ◽  
...  

AbstractThe type I interferon (IFN) signaling pathway has important functions in resistance to viral infection, with the downstream induction of interferon stimulated genes (ISG) protecting the host from virus entry, replication and spread. Listeria monocytogenes (Lm), a facultative intracellular foodborne pathogen, can exploit the type I IFN response as part of their pathogenic strategy, but the molecular mechanisms involved remain unclear. Here we show that type I IFN suppresses the antibacterial activity of phagocytes to promote systemic Lm infection. Mechanistically, type I IFN suppresses phagosome maturation and proteolysis of Lm virulence factors ActA and LLO, thereby promoting phagosome escape and cell-to-cell spread; the antiviral protein, IFN-induced transmembrane protein 3 (IFITM3), is required for this type I IFN-mediated alteration. Ifitm3−/− mice are resistant to systemic infection by Lm, displaying decreased bacterial spread in tissues, and increased immune cell recruitment and pro-inflammatory cytokine signaling. Together, our findings show how an antiviral mechanism in phagocytes can be exploited by bacterial pathogens, and implicate IFITM3 as a potential antimicrobial therapeutic target.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Chao Liu ◽  
An-Song Liu ◽  
Da Zhong ◽  
Cheng-Gong Wang ◽  
Mi Yu ◽  
...  

AbstractBone marrow-derived mesenchymal stem cells (BM-MSCs), the common progenitor cells of adipocytes and osteoblasts, have been recognized as the key mediator during bone formation. Herein, our study aim to investigate molecular mechanisms underlying circular RNA (circRNA) AFF4 (circ_AFF4)-regulated BM-MSCs osteogenesis. BM-MSCs were characterized by FACS, ARS, and ALP staining. Expression patterns of circ_AFF4, miR-135a-5p, FNDC5/Irisin, SMAD1/5, and osteogenesis markers, including ALP, BMP4, RUNX2, Spp1, and Colla1 were detected by qRT-PCR, western blot, or immunofluorescence staining, respectively. Interactions between circ_AFF4 and miR-135a-5p, FNDC5, and miR-135a-5p were analyzed using web tools including TargetScan, miRanda, and miRDB, and further confirmed by luciferase reporter assay and RNA pull-down. Complex formation between Irisin and Integrin αV was verified by Co-immunoprecipitation. To further verify the functional role of circ_AFF4 in vivo during bone formation, we conducted animal experiments harboring circ_AFF4 knockdown, and born samples were evaluated by immunohistochemistry, hematoxylin and eosin, and Masson staining. Circ_AFF4 was upregulated upon osteogenic differentiation induction in BM-MSCs, and miR-135a-5p expression declined as differentiation proceeds. Circ_AFF4 knockdown significantly inhibited osteogenesis potential in BM-MSCs. Circ_AFF4 stimulated FNDC5/Irisin expression through complementary binding to its downstream target molecule miR-135a-5p. Irisin formed an intermolecular complex with Integrin αV and activated the SMAD1/5 pathway during osteogenic differentiation. Our work revealed that circ_AFF4, acting as a sponge of miR-135a-5p, triggers the promotion of FNDC5/Irisin via activating the SMAD1/5 pathway to induce osteogenic differentiation in BM-MSCs. These findings gained a deeper insight into the circRNA-miRNA regulatory system in the bone marrow microenvironment and may improve our understanding of bone formation-related diseases at physiological and pathological levels.


Sign in / Sign up

Export Citation Format

Share Document