scholarly journals Thrombin Modulates the Expression of a Set of Genes Including Thrombospondin-1 in Human Microvascular Endothelial Cells

2005 ◽  
Vol 280 (23) ◽  
pp. 22172-22180 ◽  
Author(s):  
Joseph N. McLaughlin ◽  
Maria R. Mazzoni ◽  
John H. Cleator ◽  
Laurie Earls ◽  
Ana Luisa Perdigoto ◽  
...  

Thrombospondin-1 (THBS1) is a large extracellular matrix glycoprotein that affects vasculature systems such as platelet activation, angiogenesis, and wound healing. Increases in THBS1 expression have been liked to disease states including tumor progression, atherosclerosis, and arthritis. The present study focuses on the effects of thrombin activation of the G-protein-coupled, protease-activated receptor-1 (PAR-1) on THBS1 gene expression in the microvascular endothelium. Thrombin-induced changes in gene expression were characterized by microarray analysis of ∼11,000 different human genes in human microvascular endothelial cells (HMEC-1). Thrombin induced the expression of a set of at least 65 genes including THBS1. Changes in THBS1 mRNA correlated with an increase in the extracellular THBS1 protein concentration. The PAR-1-specific agonist peptide (TFLLRNK-PDK) mimicked thrombin stimulation of THBS1 expression, suggesting that thrombin signaling is through PAR-1. Further studies showed THBS1 expression was sensitive to pertussis toxin and protein kinase C inhibition indicating Gi/o- and Gq-mediated pathways. THBS1 up-regulation was also confirmed in human umbilical vein endothelial cells stimulated with thrombin. Analysis of the promoter region of THBS1 and other genes of similar expression profile identified from the microarray predicted an EBOX/EGRF transcription model. Expression of members of each family, MYC and EGR1, respectively, correlated with THBS1 expression. These results suggest thrombin formed at sites of vascular injury increases THBS1 expression into the extracellular matrix via activation of a PAR-1, Gi/o, Gq, EBOX/EGRF-signaling cascade, elucidating regulatory points that may play a role in increased THBS1 expression in disease states.

1997 ◽  
Vol 138 (3) ◽  
pp. 707-717 ◽  
Author(s):  
David W. Dawson ◽  
S. Frieda A. Pearce ◽  
Ruiqin Zhong ◽  
Roy L. Silverstein ◽  
William A. Frazier ◽  
...  

Thrombospondin-1 (TSP-1) is a naturally occurring inhibitor of angiogenesis that is able to make normal endothelial cells unresponsive to a wide variety of inducers. Here we use both native TSP-1 and small antiangiogenic peptides derived from it to show that this inhibition is mediated by CD36, a transmembrane glycoprotein found on microvascular endothelial cells. Both IgG antibodies against CD36 and glutathione-S-transferase–CD36 fusion proteins that contain the TSP-1 binding site blocked the ability of intact TSP-1 and its active peptides to inhibit the migration of cultured microvascular endothelial cells. In addition, antiangiogenic TSP-1 peptides inhibited the binding of native TSP-1 to solid phase CD36 and its fusion proteins, as well as to CD36-expressing cells. Additional molecules known to bind CD36, including the IgM anti-CD36 antibody SM∅, oxidized (but not unoxidized) low density lipoprotein, and human collagen 1, mimicked TSP-1 by inhibiting the migration of human microvascular endothelial cells. Transfection of CD36-deficient human umbilical vein endothelial cells with a CD36 expression plasmid caused them to become sensitive to TSP-1 inhibition of their migration and tube formation. This work demonstrates that endothelial CD36, previously thought to be involved only in adhesion and scavenging activities, may be essential for the inhibition of angiogenesis by thrombospondin-1.


Gut ◽  
1998 ◽  
Vol 42 (5) ◽  
pp. 635-642 ◽  
Author(s):  
E M Nilsen ◽  
F-E Johansen ◽  
F L Jahnsen ◽  
K E A Lundin ◽  
T Scholz ◽  
...  

Background and aims—Cytokine production by endothelial cells has, for practical reasons, been chiefly studied in human umbilical vein endothelial cells (HUVEC) but, because tissue-specific differences apparently exist, the role of human intestinal microvascular endothelial cells (HIMEC) as a source of mucosal cytokines was also assessed.Methods—The expression of cytokine transcripts in HIMEC was screened by means of reverse transcription polymerase chain reaction (RT-PCR) and compared with cytokine profiles of HUVEC. Production of cytokines was investigated by bioassay and enzyme linked immunosorbent assay (ELISA).Results—In the basal unstimulated state, HIMEC and HUVEC cultures contained detectable mRNA for interleukin (IL)-3, IL-7, IL-8, IL-11, IL-14, IL-15, tumour necrosis factor (TNF)-α, transforming growth factor (TGF)-β, and granulocyte-macrophage colony stimulating factor (GM-CSF). However, message was undetectable for IL-2, IL-4, IL-5, IL-9, IL-10, IL-12p40, IL-13, and interferon (IFN)-γ in the resting as well as the stimulated state. Stimulation of HIMEC and HUVEC with recombinant human (rh) IL-1β or rhTNF-α induced cell associated bioactive IL-1α but not IL-1β, as well as enhanced secretion of both IL-6 and IL-8. Furthermore, transcript levels for GM-CSF and TNF-α were enhanced by rhIL-1β or rhTNF-α in both cell types. Supernatants from Th1-like or Th0-like gluten reactive intestinal T cell clones derived from patients with coeliac disease elicited cytokine profiles in both HIMEC and HUVEC similar to those revealed after rhIL-1β or rhTNF-α stimulation.Conclusions—These data demonstrate that the intestinal microvascular endothelium may contribute to the cytokine network of the intestinal mucosa with the ability to respond to locally generated cytokines and to produce potent inflammatory mediators.


2018 ◽  
Vol 25 (4) ◽  
pp. e12450 ◽  
Author(s):  
Mingming Liu ◽  
Wenbao Lu ◽  
Qunxing Hou ◽  
Bing Wang ◽  
Youming Sheng ◽  
...  

1993 ◽  
Vol 264 (2) ◽  
pp. H639-H652 ◽  
Author(s):  
M. Nishida ◽  
W. W. Carley ◽  
M. E. Gerritsen ◽  
O. Ellingsen ◽  
R. A. Kelly ◽  
...  

Although reciprocal intercellular signaling may occur between endocardial or microvascular endothelium and cardiac myocytes, suitable in vitro models have not been well characterized. In this report, we describe the isolation and primary culture of cardiac microvascular endothelial cells (CMEC) from both adult rat and human ventricular tissue. Differential uptake of fluorescently labeled acetylated low-density lipoprotein (Ac-LDL) indicated that primary isolates of rat CMEC were quite homogeneous, unlike primary isolates of human ventricular tissue, which required cell sorting based on Ac-LDL uptake to create endothelial cell-enriched primary cultures. The endothelial phenotype of both primary isolates and postsort subcultured CMEC and their microvascular origin were determined by characteristic histochemical staining for a number of endothelial cell-specific markers, by the absence of cells with fibroblast or pericyte-specific cell surface antigens, and by rapid tube formation on purified basement membrane preparations. Importantly, [3H]-thymidine uptake was increased 2.3-fold in subconfluent rat microvascular endothelial cells 3 days after coculture with adult rat ventricular myocytes because of release of an endothelial cell mitogen(s) into the extracellular matrix, resulting in a 68% increase in cell number compared with CMEC in monoculture. Thus biologically relevant cell-to-cell interactions can be modeled with this in vitro system.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 240 ◽  
Author(s):  
Abha Sahni ◽  
Hema Narra ◽  
Jignesh Patel ◽  
Sanjeev Sahni

Microvascular endothelial cells (ECs) represent the primary target cells during human rickettsioses and respond to infection via the activation of immediate–early signaling cascades and the resultant induction of gene expression. As small noncoding RNAs dispersed throughout the genome, microRNAs (miRNAs) regulate gene expression post-transcriptionally to govern a wide range of biological processes. Based on our recent findings demonstrating the involvement of fibroblast growth factor receptor 1 (FGFR1) in facilitating rickettsial invasion into host cells and published reports suggesting miR-424 and miR-503 as regulators of FGF2/FGFR1, we measured the expression of miR-424 and miR-503 during R. conorii infection of human dermal microvascular endothelial cells (HMECs). Our results revealed a significant decrease in miR-424 and miR-503 expression in apparent correlation with increased expression of FGF2 and FGFR1. Considering the established phenomenon of endothelial heterogeneity and pulmonary and cerebral edema as the prominent pathogenic features of rickettsial infections, and significant pathogen burden in the lungs and brain in established mouse models of disease, we next quantified miR-424 and miR-503 expression in pulmonary and cerebral microvascular ECs. Again, R. conorii infection dramatically downregulated both miRNAs in these tissue-specific ECs as early as 30 min post-infection in correlation with higher FGF2/FGFR1 expression. Changes in the expression of both miRNAs and FGF2/FGFR1 were next confirmed in a mouse model of R. conorii infection. Furthermore, miR-424 overexpression via transfection of a mimic into host ECs reduced the expression of FGF2/FGFR1 and gave a corresponding decrease in R. conorii invasion, while an inhibitor of miR-424 had the expected opposite effect. Together, these findings implicate the rickettsial manipulation of host gene expression via regulatory miRNAs to ensure efficient cellular entry as the critical requirement to establish intracellular infection.


2009 ◽  
Vol 136 (5) ◽  
pp. A-698-A-699
Author(s):  
Amrita Ahluwalia ◽  
Xiaoming Deng ◽  
Vipal Gandhi ◽  
Sushrut S. Thiruvengadam ◽  
Andrzej S. Tarnawski

2019 ◽  
Vol 316 (5) ◽  
pp. L740-L750 ◽  
Author(s):  
Hira Raheel ◽  
Siavash Ghaffari ◽  
Negar Khosraviani ◽  
Victoria Mintsopoulos ◽  
Derek Auyeung ◽  
...  

In healthy blood vessels, albumin crosses the endothelium to leave the circulation by transcytosis. However, little is known about the regulation of albumin transcytosis or how it differs in different tissues; its physiological purpose is also unclear. Using total internal reflection fluorescence microscopy, we quantified transcytosis of albumin across primary human microvascular endothelial cells from both lung and skin. We then validated our in vitro findings using a tissue-specific knockout mouse model. We observed that albumin transcytosis was saturable in the skin but not the lung microvascular endothelial cells, implicating a receptor-mediated process. We identified the scavenger receptor CD36 as being both necessary and sufficient for albumin transcytosis across dermal microvascular endothelium, in contrast to the lung where macropinocytosis dominated. Mutations in the apical helical bundle of CD36 prevented albumin internalization by cells. Mice deficient in CD36 specifically in endothelial cells exhibited lower basal permeability to albumin and less basal tissue edema in the skin but not in the lung. Finally, these mice also exhibited a smaller subcutaneous fat layer despite having identical total body weights and circulating fatty acid levels as wild-type animals. In conclusion, CD36 mediates albumin transcytosis in the skin but not the lung. Albumin transcytosis may serve to regulate fatty acid delivery from the circulation to tissues.


Sign in / Sign up

Export Citation Format

Share Document