scholarly journals Immediate Adaptation Analysis Implicates BCL6 as an EGFR-TKI Combination Therapy Target in NSCLC

2020 ◽  
Vol 19 (6) ◽  
pp. 928-943 ◽  
Author(s):  
Yan Zhou Tran ◽  
Rezan Minozada ◽  
Xiaofang Cao ◽  
Henrik J. Johansson ◽  
Rui M. Branca ◽  
...  

Drug resistance is a major obstacle to curative cancer therapies, and increased understanding of the molecular events contributing to resistance would enable better prediction of therapy response, as well as contribute to new targets for combination therapy. Here we have analyzed the early molecular response to epidermal growth factor receptor (EGFR) inhibition using RNA sequencing data covering 13,486 genes and mass spectrometry data covering 10,138 proteins. This analysis revealed a massive response to EGFR inhibition already within the first 24 h, including significant regulation of hundreds of genes known to control downstream signaling, such as transcription factors, kinases, phosphatases and ubiquitin E3-ligases. Importantly, this response included upregulation of key genes in multiple oncogenic signaling pathways that promote proliferation and survival, such as ERBB3, FGFR2, JAK3, and BCL6, indicating an early adaptive response to EGFR inhibition. Using a library of more than 500 approved and experimental compounds in a combination therapy screen, we could show that several kinase inhibitors with targets including JAK3 and FGFR2 increased the response to EGFR inhibitors. Further, we investigated the functional impact of BCL6 upregulation in response to EGFR inhibition using siRNA-based silencing of BCL6. Proteomics profiling revealed that BCL6 inhibited transcription of multiple target genes including p53, resulting in reduced apoptosis which implicates BCL6 upregulation as a new EGFR inhibitor treatment escape mechanism. Finally, we demonstrate that combined treatment targeting both EGFR and BCL6 act synergistically in killing lung cancer cells. In conclusion, or data indicates that multiple different adaptive mechanisms may act in concert to blunt the cellular impact of EGFR inhibition, and we suggest BCL6 as a potential target for EGFR inhibitor-based combination therapy.

2021 ◽  
Vol 99 (2) ◽  
Author(s):  
Yuhua Fu ◽  
Pengyu Fan ◽  
Lu Wang ◽  
Ziqiang Shu ◽  
Shilin Zhu ◽  
...  

Abstract Despite the broad variety of available microRNA (miRNA) research tools and methods, their application to the identification, annotation, and target prediction of miRNAs in nonmodel organisms is still limited. In this study, we collected nearly all public sRNA-seq data to improve the annotation for known miRNAs and identify novel miRNAs that have not been annotated in pigs (Sus scrofa). We newly annotated 210 mature sequences in known miRNAs and found that 43 of the known miRNA precursors were problematic due to redundant/missing annotations or incorrect sequences. We also predicted 811 novel miRNAs with high confidence, which was twice the current number of known miRNAs for pigs in miRBase. In addition, we proposed a correlation-based strategy to predict target genes for miRNAs by using a large amount of sRNA-seq and RNA-seq data. We found that the correlation-based strategy provided additional evidence of expression compared with traditional target prediction methods. The correlation-based strategy also identified the regulatory pairs that were controlled by nonbinding sites with a particular pattern, which provided abundant complementarity for studying the mechanism of miRNAs that regulate gene expression. In summary, our study improved the annotation of known miRNAs, identified a large number of novel miRNAs, and predicted target genes for all pig miRNAs by using massive public data. This large data-based strategy is also applicable for other nonmodel organisms with incomplete annotation information.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 814
Author(s):  
Donghao Zhang ◽  
Jinshan Ran ◽  
Jingjing Li ◽  
Chunlin Yu ◽  
Zhifu Cui ◽  
...  

The proliferation and differentiation of skeletal muscle satellite cells (SMSCs) play an important role in the development of skeletal muscle. Our previous sequencing data showed that miR-21-5p is one of the most abundant miRNAs in chicken skeletal muscle. Therefore, in this study, the spatiotemporal expression of miR-21-5p and its effects on skeletal muscle development of chickens were explored using in vitro cultured SMSCs as a model. The results in this study showed that miR-21-5p was highly expressed in the skeletal muscle of chickens. The overexpression of miR-21-5p promoted the proliferation of SMSCs as evidenced by increased cell viability, increased cell number in the proliferative phase, and increased mRNA and protein expression of proliferation markers including PCNA, CDK2, and CCND1. Moreover, it was revealed that miR-21-5p promotes the formation of myotubes by modulating the expression of myogenic markers including MyoG, MyoD, and MyHC, whereas knockdown of miR-21-5p showed the opposite result. Gene prediction and dual fluorescence analysis confirmed that KLF3 was one of the direct target genes of miR-21-5p. We confirmed that, contrary to the function of miR-21-5p, KLF3 plays a negative role in the proliferation and differentiation of SMSCs. Si-KLF3 promotes cell number and proliferation activity, as well as the cell differentiation processes. Our results demonstrated that miR-21-5p promotes the proliferation and differentiation of SMSCs by targeting KLF3. Collectively, the results obtained in this study laid a foundation for exploring the mechanism through which miR-21-5p regulates SMSCs.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 519
Author(s):  
Eleni Anastasiadou ◽  
Elena Messina ◽  
Tiziana Sanavia ◽  
Lucia Mundo ◽  
Federica Farinella ◽  
...  

Conventional/targeted chemotherapies and ionizing radiation (IR) are being used both as monotherapies and in combination for the treatment of epithelial ovarian cancer (EOC). Several studies show that these therapies might favor oncogenic signaling and impede anti-tumor responses. MiR-200c is considered a master regulator of EOC-related oncogenes. In this study, we sought to investigate if chemotherapy and IR could influence the expression of miR-200c-3p and its target genes, like the immune checkpoint PD-L1 and other oncogenes in a cohort of EOC patients’ biopsies. Indeed, PD-L1 expression was induced, while miR-200c-3p was significantly reduced in these biopsies post-therapy. The effect of miR-200c-3p target genes was assessed in miR-200c transfected SKOV3 cells untreated and treated with olaparib and IR alone. Under all experimental conditions, miR-200c-3p concomitantly reduced PD-L1, c-Myc and β-catenin expression and sensitized ovarian cancer cells to olaparib and irradiation. In silico analyses further confirmed the anti-correlation between miR-200c-3p with c-Myc and β-catenin in 46 OC cell lines and showed that a higher miR-200c-3p expression associates with a less tumorigenic microenvironment. These findings provide new insights into how miR-200c-3p could be used to hold in check the adverse effects of conventional chemotherapy, targeted therapy and radiation therapy, and offer a novel therapeutic strategy for EOC.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2006
Author(s):  
Hongyu Liu ◽  
Ibrar Muhammad Khan ◽  
Huiqun Yin ◽  
Xinqi Zhou ◽  
Muhammad Rizwan ◽  
...  

The mRNAs and long non-coding RNAs axes are playing a vital role in the regulating of post-transcriptional gene expression. Thereby, elucidating the expression pattern of mRNAs and long non-coding RNAs underlying testis development is crucial. In this study, mRNA and long non-coding RNAs expression profiles were investigated in 3-month-old calves and 3-year-old mature bulls’ testes by total RNA sequencing. Additionally, during the gene level analysis, 21,250 mRNAs and 20,533 long non-coding RNAs were identified. As a result, 7908 long non-coding RNAs (p-adjust < 0.05) and 5122 mRNAs (p-adjust < 0.05) were significantly differentially expressed between the distinct age groups. In addition, gene ontology and biological pathway analyses revealed that the predicted target genes are enriched in the lysine degradation, cell cycle, propanoate metabolism, adherens junction and cell adhesion molecules pathways. Correspondingly, the RT-qPCR validation results showed a strong consistency with the sequencing data. The source genes for the mRNAs (CCDC83, DMRTC2, HSPA2, IQCG, PACRG, SPO11, EHHADH, SPP1, NSD2 and ACTN4) and the long non-coding RNAs (COX7A2, COX6B2, TRIM37, PRM2, INHBA, ERBB4, SDHA, ATP6VOA2, FGF9 and TCF21) were found to be actively associated with bull sexual maturity and spermatogenesis. This study provided a comprehensive catalog of long non-coding RNAs in the bovine testes and also offered useful resources for understanding the differences in sexual development caused by the changes in the mRNA and long non-coding RNA interaction expressions between the immature and mature stages.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Yuchen Liu ◽  
Jianfa Li ◽  
Zhicong Chen ◽  
Weiren Huang ◽  
Zhiming Cai

Natural signaling circuits could be rewired to reprogram cells with pre-determined procedures. However, it is difficult to link cellular signals at will. Here, we describe signal-connectors—a series of RNA devices—that connect one signal to another signal at the translational level. We use them to either repress or enhance the translation of target genes in response to signals. Application of these devices allows us to construct various logic gates and to incorporate feedback loops into gene networks. They have also been used to rewire a native signaling pathway and even to create novel pathways. Furthermore, logical AND gates based on these devices and integration of multiple signals have been used successfully for identification and redirection of the state of cancer cells. Eventually, the malignant phenotypes of cancers have been reversed by rewiring the oncogenic signaling from promoting to suppressing tumorigenesis. We provide a novel platform for redirecting cellular information.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii22-ii23
Author(s):  
G Casati ◽  
L Giunti ◽  
A Iorio ◽  
A Marturano ◽  
I Sardi

Abstract BACKGROUND Glioblastoma (GBM) is a primary human malignant brain tumor, the most common in adults. Several studies have highlighted the Hippo-pathway as a cancer signalling network. The Hippo pathway is an evolutionarily conserved signal cascade, which is involved in the control of organ growth. Dysregulations among this pathway have been found in lung, ovarian, liver and colorectal cancer. The key downstream effector of the Hippo-pathway is the Yes-associated protein (YAP); in the nucleus, its function as transcription co-activator is to interact with transcription factors, resulting in the expression of target genes involved in pro-proliferating and anti-apoptotic programs. MATERIAL AND METHODS Using western blotting analysis, we determined the nuclear expression of YAP on three GBM cell lines (U87MG, T98G and A172). To investigate which inhibitors against the Hippo-pathway were the most efficient, we performed a cytotoxic assay: we treated all the three cell lines with different inhibitors such as Verteporfin (VP), Cytochalasin D (CIT), Latrunculin A (LAT), Dobutamine (DOB) and Y27632. Afterwards, we performed a treatment using Doxorubicin (DOX) combined with the inhibitors, evaluating its cytotoxic effect on our cell lines, through cell viability experiments. More western blotting experiments were performed to investigate the oncogenic role of YAP at nucleus level. Furthermore, preliminary experiments have been conducted in order to investigate the apoptosis, senescence and autophagy modulation due to the Hippo-pathway. RESULTS We showed our cell lines express nuclear YAP. We assessed the efficiency of the main inhibitors against Hippo-pathway, proving that VP, LAT A and CIT show a strong cytostatic effect, linked to time increase; plus we saw a cytotoxic effect on T98G. The association of DOX with selected inhibitors is able to reduce cell viability and nuclear YAP expression rate in all three GBM lines. Finally, preliminary experiments were set up to assess how and if the mechanisms of apoptosis, autophagy and senescence were affected by the Hippo-pathway. The combination of DOX with inhibitors promotes resistance to apoptosis. CONCLUSION Our results show that nuclear YAP is present in all tumor lines, thus confirming that this molecular pathway is functioning in GBM lines. Nuclear YAP is more highly expressed after DOX administration. Moreover, the combined treatment (DOX with Hippo-pathway inhibitors) reduces both cell proliferation and viability, and increases the rate of apoptosis. Preliminary experiments on senescence and autophagy were used to determine the best Hippo-pathway inhibitor. These data demonstrate that the Hippo-pathway plays a crucial role in GBM proliferation and resistance to apoptosis. Inhibiting this pathway and in particular the transcription factor YAP, in association with DOX, might be an excellent therapeutic target.


2020 ◽  
Vol 2020 ◽  
pp. 1-4 ◽  
Author(s):  
Jeffrey Chi ◽  
Jennifer Park ◽  
Muhammad Wasif Saif

Combination therapy with ibrutinib and cetuximab is being studied in a phase 1b/2 trial in patients with advanced gastrointestinal and genitourinary malignancies. Rash is a common cutaneous adverse effect for both medications. Ibrutinib is a Bruton’s tyrosine kinase (BTK) inhibitor approved for the treatment of several hematologic malignancies. The rash can be asymptomatic, nonpalpable, mild skin eruption, or palpable purpuric rash. A rarer panniculitis form has also been reported. Cetuximab, an epidermal growth factor (EGFR) inhibitor, approved for treatment in head and neck and advanced gastrointestinal malignancies is also known to cause acneiform rash in majority of patients. The rash is due to inhibition of EGFR in the basal keratinocytes and hair follicles. In the case of ibrutinib, the off-target effects on EGFR, c-kit, and platelet-derived growth factor receptor (PDGFR) are thought to be responsible for the cutaneous eruption of various forms of rash. The combination therapy with the BTK inhibitor and a direct EGFR inhibitor may potentiate the rash inducing effects of the drugs. Here, we describe a case of vasculitis in a patient with metastatic colon cancer who received both ibrutinib and cetuximab on a phase Ib/II clinical trial.


2019 ◽  
Vol 28 (14) ◽  
pp. 2319-2329 ◽  
Author(s):  
Kohei Hamanaka ◽  
Atsushi Takata ◽  
Yuri Uchiyama ◽  
Satoko Miyatake ◽  
Noriko Miyake ◽  
...  

AbstractDisorders of sex development (DSDs) are defined as congenital conditions in which chromosomal, gonadal or anatomical sex is atypical. In many DSD cases, genetic causes remain to be elucidated. Here, we performed a case–control exome sequencing study comparing gene-based burdens of rare damaging variants between 26 DSD cases and 2625 controls. We found exome-wide significant enrichment of rare heterozygous truncating variants in the MYRF gene encoding myelin regulatory factor, a transcription factor essential for oligodendrocyte development. All three variants occurred de novo. We identified an additional 46,XY DSD case of a de novo damaging missense variant in an independent cohort. The clinical symptoms included hypoplasia of Müllerian derivatives and ovaries in 46,XX DSD patients, defective development of Sertoli and Leydig cells in 46,XY DSD patients and congenital diaphragmatic hernia in one 46,XY DSD patient. As all of these cells and tissues are or partly consist of coelomic epithelium (CE)-derived cells (CEDC) and CEDC developed from CE via proliferaiton and migration, MYRF might be related to these processes. Consistent with this hypothesis, single-cell RNA sequencing of foetal gonads revealed high expression of MYRF in CE and CEDC. Reanalysis of public chromatin immunoprecipitation sequencing data for rat Myrf showed that genes regulating proliferation and migration were enriched among putative target genes of Myrf. These results suggested that MYRF is a novel causative gene of 46,XY and 46,XX DSD and MYRF is a transcription factor regulating CD and/or CEDC proliferation and migration, which is essential for development of multiple organs.


2020 ◽  
Author(s):  
Philipp Sievers ◽  
Martin Sill ◽  
Daniel Schrimpf ◽  
Damian Stichel ◽  
David E. Reuss ◽  
...  

AbstractBackgroundMalignant astrocytic gliomas in children show a remarkable biological and clinical diversity. Small in-frame insertions or missense mutations in the EGFR gene have recently been identified in a distinct subset of pediatric bithalamic gliomas with a unique DNA methylation pattern.MethodsHere, we investigated an epigenetically homogeneous cohort of malignant gliomas (n=58) distinct from other subtypes and enriched for pediatric cases and thalamic location, in order to elucidate the overlap with this recently identified subtype of pediatric bithalamic gliomas.ResultsEGFR gene amplification was detected in 16/58 (27%) tumors, and missense mutations or small in-frame insertions in EGFR were found in 20/30 tumors with available sequencing data (67%; five of them co-occurring with EGFR amplification). Additionally, eight of the 30 tumors (27%) harbored an H3.1 or H3.3 K27M mutation (six of them with a concomitant EGFR alteration). All tumors tested showed loss of H3K27me3 staining, with evidence of EZHIP overexpression in the H3 wildtype cases. Although some tumors indeed showed a bithalamic growth pattern, a significant proportion of tumors occurred in the unilateral thalamus or in other (predominantly midline) locations.ConclusionsOur findings present a distinct molecular class of pediatric malignant gliomas largely overlapping with the recently reported bithalamic gliomas characterized by EGFR alteration, but additionally showing a broader spectrum of EGFR alterations and tumor localization. Global H3K27me3 loss in this group appears to be mediated by either H3 K27 mutation or EZHIP overexpression. EGFR inhibition may represent a potential therapeutic strategy in these highly aggressive gliomas.Key pointsThis study confirms a distinct new subset of pediatric diffuse midline glioma with H3K27me3 loss, with or without H3 K27 mutationThe poor outcome of these tumors is in line with the broader family of pediatric diffuse midline gliomas with H3 K27 mutation or EZHIP overexpressionFrequent EGFR alterations in these tumors may represent a therapeutic target in this subsetImportance of the StudyMalignant astrocytic gliomas in children show a remarkable biological and clinical diversity. Here, we highlight a distinct molecular class of pediatric malignant gliomas characterized by EGFR alteration and global H3K27me3 loss that appears to be mediated by either H3 K27 mutation or EZHIP overexpression. EGFR inhibition may represent a potential therapeutic strategy in these highly aggressive gliomas.


2018 ◽  
Vol 2 (20) ◽  
pp. 2691-2703 ◽  
Author(s):  
Nur-Taz Rahman ◽  
Vincent P. Schulz ◽  
Lin Wang ◽  
Patrick G. Gallagher ◽  
Oleg Denisenko ◽  
...  

Abstract Serum response factor (SRF) is a ubiquitously expressed transcription factor that binds DNA at CArG (CC[A/T]6GG) domains in association with myocardin-family proteins (eg, myocardin-related transcription factor A [MRTFA]) or the ternary complex factor family of E26 transformation-specific (ETS) proteins. In primary hematopoietic cells, knockout of either SRF or MRTFA decreases megakaryocyte (Mk) maturation causing thrombocytopenia. The human erythroleukemia (HEL) cell line mimics the effects of MRTFA on Mk maturation, and MRTFA overexpression (MRTFAOE) in HEL cells enhances megakaryopoiesis. To identify the mechanisms underlying these effects, we performed integrated analyses of anti-SRF chromatin immunoprecipitation (ChIP) and RNA-sequencing data from noninduced and phorbol ester (12-O-tetradecanoylphorbol-13-acetate [TPA])–induced HEL cells, with and without MRTFAOE. We found that 11% of genes were upregulated with TPA induction, which was enhanced by MRTFAOE, resulting in an upregulation of 25% of genes. MRTFAOE increased binding of SRF to genomic sites and enhanced TPA-induced expression of SRF target genes. The TPA-induced genes are predicted to be regulated by SRF and ETS factors, whereas those upregulated by TPA plus MRTFAOE lack ETS binding motifs, and MRTFAOE skews SRF binding to genomic regions with CArG sites in regions relatively lacking in ETS binding motifs. Finally, ChIP–polymerase chain reaction using HEL cells and primary human CD34+ cell–derived subpopulations confirms that both SRF and MRTFA have increased binding during megakaryopoiesis at upregulated target genes (eg, CORO1A). We show for the first time that MRTFA increases both the genomic association and activity of SRF and upregulates genes that enhance primary human megakaryopoiesis.


Sign in / Sign up

Export Citation Format

Share Document