MYRF haploinsufficiency causes 46,XY and 46,XX disorders of sex development: bioinformatics consideration

2019 ◽  
Vol 28 (14) ◽  
pp. 2319-2329 ◽  
Author(s):  
Kohei Hamanaka ◽  
Atsushi Takata ◽  
Yuri Uchiyama ◽  
Satoko Miyatake ◽  
Noriko Miyake ◽  
...  

AbstractDisorders of sex development (DSDs) are defined as congenital conditions in which chromosomal, gonadal or anatomical sex is atypical. In many DSD cases, genetic causes remain to be elucidated. Here, we performed a case–control exome sequencing study comparing gene-based burdens of rare damaging variants between 26 DSD cases and 2625 controls. We found exome-wide significant enrichment of rare heterozygous truncating variants in the MYRF gene encoding myelin regulatory factor, a transcription factor essential for oligodendrocyte development. All three variants occurred de novo. We identified an additional 46,XY DSD case of a de novo damaging missense variant in an independent cohort. The clinical symptoms included hypoplasia of Müllerian derivatives and ovaries in 46,XX DSD patients, defective development of Sertoli and Leydig cells in 46,XY DSD patients and congenital diaphragmatic hernia in one 46,XY DSD patient. As all of these cells and tissues are or partly consist of coelomic epithelium (CE)-derived cells (CEDC) and CEDC developed from CE via proliferaiton and migration, MYRF might be related to these processes. Consistent with this hypothesis, single-cell RNA sequencing of foetal gonads revealed high expression of MYRF in CE and CEDC. Reanalysis of public chromatin immunoprecipitation sequencing data for rat Myrf showed that genes regulating proliferation and migration were enriched among putative target genes of Myrf. These results suggested that MYRF is a novel causative gene of 46,XY and 46,XX DSD and MYRF is a transcription factor regulating CD and/or CEDC proliferation and migration, which is essential for development of multiple organs.

2019 ◽  
Vol 317 (5) ◽  
pp. C1034-C1047 ◽  
Author(s):  
Yun-Ting Wang ◽  
Jiajie Chen ◽  
Xiang Li ◽  
Michihisa Umetani ◽  
Yang Chen ◽  
...  

Abnormal vascular smooth muscle cell (SMC) dedifferentiation with increased proliferation and migration during pathological vascular remodeling is associated with vascular disorders, such as atherosclerosis and in-stent restenosis. AdipoRon, a selective agonist of adiponectin receptor, has been shown to protect against vascular remodeling by preventing SMC dedifferentiation. However, the molecular mechanisms that mediate adipoRon-induced SMC differentiation are not well understood. The present study aimed to elucidate the role of transcription factor EB (TFEB), a master regulator of autophagy, in mediating adipoRon’s effect on SMCs. In cultured arterial SMCs, adipoRon dose-dependently increased TFEB activation, which is accompanied by upregulated transcription of genes involved in autophagy pathway and enhanced autophagic flux. In parallel, adipoRon suppressed serum-induced cell proliferation and caused cell cycle arrest. Moreover, adipoRon inhibited SMC migration as characterized by wound-healing retardation, F-actin reorganization, and matrix metalloproteinase-9 downregulation. These inhibitory effects of adipoRon on proliferation and migration were attenuated by TFEB gene silencing. Mechanistically, activation of TFEB by adipoRon is dependent on intracellular calcium, but it is not associated with changes in AMPK, ERK1/2, Akt, or molecular target of rapamycin complex 1 activation. Using ex vivo aortic explants, we demonstrated that adipoRon inhibited sprouts that had outgrown from aortic rings, whereas lentiviral TFEB shRNA transduction significantly reversed this effect of adipoRon on aortic rings. Taken together, our results indicate that adipoRon activates TFEB signaling that helps maintain the quiescent and differentiated status of arterial SMCs, preventing abnormal SMC dedifferentiation. This study provides novel mechanistic insights into understanding the therapeutic effects of adipoRon on TFEB signaling and pathological vascular remodeling.


2016 ◽  
Vol 94 (3) ◽  
pp. 247-255 ◽  
Author(s):  
Ruiting Li ◽  
Yinghui Li ◽  
Xin Hu ◽  
Haiwei Lian ◽  
Lei Wang ◽  
...  

Transcription factor 3 (TCF3) is a member of the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factor family. Recent studies have demonstrated its potential carcinogenic properties. Here we show that TCF3 was upregulated in glioma tissues compared with normal brain tissues. This upregulation of the TCF3 gene probably has functional significance in brain-tumor progression. Our studies on glioblastoma multiforme (GBM) cell lines show that knock-down of TCF3 induced apoptosis and inhibited cell migration. Further analysis revealed that down-regulation of TCF3 gene expression inhibits Akt and Erk1/2 activation, suggesting that the carcinogenic properties of TCF3 in GBM are partially mediated by the phosphatidylinositol 3-kinase–Akt and MAPK–Erk signaling pathways. Considered together, the results of this study demonstrate that high levels of TCF3 in gliomas potentially promote glioma development through the Akt and Erk pathways.


Blood ◽  
2005 ◽  
Vol 106 (6) ◽  
pp. 1938-1947 ◽  
Author(s):  
Tomohiko Tamura ◽  
Pratima Thotakura ◽  
Tetsuya S. Tanaka ◽  
Minoru S. H. Ko ◽  
Keiko Ozato

Abstract Interferon regulatory factor-8 (IRF-8)/interferon consensus sequence–binding protein (ICSBP) is a transcription factor that controls myeloid-cell development. Microarray gene expression analysis of Irf-8-/- myeloid progenitor cells expressing an IRF-8/estrogen receptor chimera (which differentiate into macrophages after addition of estradiol) was used to identify 69 genes altered by IRF-8 during early differentiation (62 up-regulated and 7 down-regulated). Among them, 4 lysosomal/endosomal enzyme-related genes (cystatin C, cathepsin C, lysozyme, and prosaposin) did not require de novo protein synthesis for induction, suggesting that they were direct targets of IRF-8. We developed a reporter assay system employing a self-inactivating retrovirus and analyzed the cystatin C and cathepsin C promoters. We found that a unique cis element mediates IRF-8–induced activation of both promoters. Similar elements were also found in other IRF-8 target genes with a consensus sequence (GAAANN[N]GGAA) comprising a core IRF-binding motif and an Ets-binding motif; this sequence is similar but distinct from the previously reported Ets/IRF composite element. Chromatin immunoprecipitation assays demonstrated that IRF-8 and the PU.1 Ets transcription factor bind to this element in vivo. Collectively, these data indicate that IRF-8 stimulates transcription of target genes through a novel cis element to specify macrophage differentiation.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1208
Author(s):  
Yali Lu ◽  
Xuechao Wan ◽  
Wenhua Huang ◽  
Lu Zhang ◽  
Jun Luo ◽  
...  

The androgen receptor (AR) and its related signaling pathways play an important role in the development of prostate cancer (PCa). Long non-coding RNAs (lncRNAs) are involved in the regulation of tumorigenesis and development, but their specific mechanism of action remains unclear. This study examines the function and mechanisms of action of lncRNA AC016745.3 in the development of PCa. It shows that dihydrotestosterone (DHT) results in the AR-dependent suppression of AC016745.3 expression in the LNCaP androgen-sensitive human prostate adenocarcinoma cell line. In addition, overexpression of AC016745.3 inhibits the proliferation and migration of PCa cells, and suppresses the expression of AR target genes. This research also demonstrates that the protein NONO interacts with AR and functions as an AR co-activator, promoting AR transcriptional activity. Furthermore, using RNA immunoprecipitation (RIP)-PCR experiments, the study demonstrates that both NONO and AR can bind AC016745.3. Moreover, cell phenotypic experiments reveal that NONO can promote cellular proliferation and migration, and that AC016745.3 can partially antagonize the pro-oncogenic functions of NONO in PCa cells. In summary, the results indicate that AC016745.3 can bind NONO, suppressing its ability to promote AR-dependent transcriptional activity. Furthermore, DHT-dependent suppression of AC016745.3 expression can enhance NONO’s promotion effect on AR.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2149
Author(s):  
Nkulu Kabange Rolly ◽  
Byung-Wook Yun

Nitrogen (N) is an essential macronutrient, which contributes substantially to the growth and development of plants. In the soil, nitrate (NO3) is the predominant form of N available to the plant and its acquisition by the plant involves several NO3 transporters; however, the mechanism underlying their involvement in the adaptive response under abiotic stress is poorly understood. Initially, we performed an in silico analysis to identify potential binding sites for the basic leucine zipper 62 transcription factor (AtbZIP62 TF) in the promoter of the target genes, and constructed their protein–protein interaction networks. Rather than AtbZIP62, results revealed the presence of cis-regulatory elements specific to two other bZIP TFs, AtbZIP18 and 69. A recent report showed that AtbZIP62 TF negatively regulated AtbZIP18 and AtbZIP69. Therefore, we investigated the transcriptional regulation of AtNPF6.2/NRT1.4 (low-affinity NO3 transporter), AtNPF6.3/NRT1.1 (dual-affinity NO3 transporter), AtNRT2.1 and AtNRT2.2 (high-affinity NO3 transporters), and AtGLU1 and AtGLU2 (both encoding glutamate synthase) in response to drought stress in Col-0. From the perspective of exploring the transcriptional interplay of the target genes with AtbZIP62 TF, we measured their expression by qPCR in the atbzip62 (lacking the AtbZIP62 gene) under the same conditions. Our recent study revealed that AtbZIP62 TF positively regulates the expression of AtPYD1 (Pyrimidine 1, a key gene of the de novo pyrimidine biosynthesis pathway know to share a common substrate with the N metabolic pathway). For this reason, we included the atpyd1-2 mutant in the study. Our findings revealed that the expression of AtNPF6.2/NRT1.4, AtNPF6.3/NRT1.1 and AtNRT2.2 was similarly regulated in atzbip62 and atpyd1-2 but differentially regulated between the mutant lines and Col-0. Meanwhile, the expression pattern of AtNRT2.1 in atbzip62 was similar to that observed in Col-0 but was suppressed in atpyd1-2. The breakthrough is that AtNRT2.2 had the highest expression level in Col-0, while being suppressed in atbzip62 and atpyd1-2. Furthermore, the transcript accumulation of AtGLU1 and AtGLU2 showed differential regulation patterns between Col-0 and atbzip62, and atpyd1-2. Therefore, results suggest that of all tested NO3 transporters, AtNRT2.2 is thought to play a preponderant role in contributing to NO3 transport events under the regulatory influence of AtbZIP62 TF in response to drought stress.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Giuseppe Straface ◽  
Andrea Flex ◽  
Federico Biscetti ◽  
Eleonora Gaetani ◽  
Giovanni Pecorini ◽  
...  

Background: Cerebellar hypoxia is responsible for important aspects of cognitive deterioration and motor disturbances in neurological disorders, such as stroke, vascular dementia, and neurodegeneration. In the cerebellum, VEGF is significantly upregulated after hypoxia and is able to induce angiogenesis, reduce neuronal apoptosis, and regulate neuronal differentiation, proliferation, and migration. But, VEGF is not sufficient to provide neuroprotection. A crucial role is played by growth associated protein-43 (GAP43), for which important activities have been described. The purpose of this study was to investigate the role of the developmental Sonic hedgehog (Shh) signaling pathway in postnatal hypoxic cerebellum and its relationship with VEGF and GAP43 expression. Methods: We used adult C57BL/6J mice, ptc1-lacZ mice, and GAP43−/− mice for these experiments. Ptc1-lacZ mice carry a non-disruptive insertion of the lacZ gene under the control of the ptc1 promoter. Ptc1 is a downstream-transcriptional target of Shh and its upregulation indicates activation of the Shh pathway. Mice were exposed to systemic normobaric hypoxia (6%O 2 ) for 6 hours and the expression of Shh, Ptc1, VEGF, and GAP43 were investigated. Results: After exposure to hypoxia, Shh-positive staining was detected in Purkinje cells (PCs). The same cells were also lacZ(ptc1)-positive, indicating that PCs are both Shh-producing and -responding elements. Also the cells of the internal granular layer (IGL) were lacZ(ptc1)-positive, indicating that these cells are Shh-responsive. LacZ(ptc1)-positive IGL cells were also immunopositive for VEGF and GAP-43. We also found that ptc1 expression is lost in PCs of GAP43−/− mice, indicating that Shh requires GAP43 to activate its downstream target genes in PCs. Finally, when cultures enriched in granular cells were stimulated with Shh recombinant protein, GAP43 phosphorylation was increased. This effect was inhibited by Shh-inhibitor cyclopamine. Conclusions: This is the first time that hypoxia is reported to activate the Shh pathway in the adult. Our data suggest that the Shh pathway might be important for the cerebellar response to hypoxia, through interactions with VEGF and GAP43.


2018 ◽  
Vol 2 (20) ◽  
pp. 2691-2703 ◽  
Author(s):  
Nur-Taz Rahman ◽  
Vincent P. Schulz ◽  
Lin Wang ◽  
Patrick G. Gallagher ◽  
Oleg Denisenko ◽  
...  

Abstract Serum response factor (SRF) is a ubiquitously expressed transcription factor that binds DNA at CArG (CC[A/T]6GG) domains in association with myocardin-family proteins (eg, myocardin-related transcription factor A [MRTFA]) or the ternary complex factor family of E26 transformation-specific (ETS) proteins. In primary hematopoietic cells, knockout of either SRF or MRTFA decreases megakaryocyte (Mk) maturation causing thrombocytopenia. The human erythroleukemia (HEL) cell line mimics the effects of MRTFA on Mk maturation, and MRTFA overexpression (MRTFAOE) in HEL cells enhances megakaryopoiesis. To identify the mechanisms underlying these effects, we performed integrated analyses of anti-SRF chromatin immunoprecipitation (ChIP) and RNA-sequencing data from noninduced and phorbol ester (12-O-tetradecanoylphorbol-13-acetate [TPA])–induced HEL cells, with and without MRTFAOE. We found that 11% of genes were upregulated with TPA induction, which was enhanced by MRTFAOE, resulting in an upregulation of 25% of genes. MRTFAOE increased binding of SRF to genomic sites and enhanced TPA-induced expression of SRF target genes. The TPA-induced genes are predicted to be regulated by SRF and ETS factors, whereas those upregulated by TPA plus MRTFAOE lack ETS binding motifs, and MRTFAOE skews SRF binding to genomic regions with CArG sites in regions relatively lacking in ETS binding motifs. Finally, ChIP–polymerase chain reaction using HEL cells and primary human CD34+ cell–derived subpopulations confirms that both SRF and MRTFA have increased binding during megakaryopoiesis at upregulated target genes (eg, CORO1A). We show for the first time that MRTFA increases both the genomic association and activity of SRF and upregulates genes that enhance primary human megakaryopoiesis.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Jia He ◽  
Bin Xiao ◽  
Xiaoyan Li ◽  
Yongyin He ◽  
Linhai Li ◽  
...  

MicroRNAs have been broadly implicated in cancer, but precise functions and mechanisms in carcinogenesis vary among cancer types and in many cases remain poorly understood. Hepatocellular carcinoma (HCC) is among the most frequent and lethal cancers. The aim of the present study was to investigate the role of miR-486-5p in HCC and identify its specific target. MiR-486-5p was significantly downregulated in HCC tissues and cell lines compared with noncancerous tissues and, respectively, although expression level was not correlated with the degree of infiltration or tumor stage. However, miR-486-5p overexpression in HCC cells inhibited proliferation and migration as evidenced by CCK-8 cell counting, wound healing, and transwell assays, indicating that miR-486-5p is an HCC suppressor. We employed four miRNA databases to predict the target genes of miR-486-5p and verified retrieved genes using qPCR and western blotting. The E3 ubiquitin ligase CBL was significantly downregulated by miR-486-5p overexpression in HCC cell lines at both mRNA and protein level, and overexpression of CBL counteracted the inhibitory effects of miR-486-5p on HCC cell proliferation and migration. Moreover, CBL expression was negatively correlated with miR-486-5p expression in HCC tissues. Collectively, our results suggest that miR-486-5p may act as a tumor suppressor gene in HCC by downregulating CBL expression.


Author(s):  
Cecilie Melau ◽  
John E Nielsen ◽  
Signe Perlman ◽  
Lene Lundvall ◽  
Lea Langhoff Thuesen ◽  
...  

Abstract Context Disorders affecting adrenal steroidogenesis promote an imbalance in the normally tightly controlled secretion of mineralocorticoids, glucocorticoids, and androgens. This may lead to differences/disorders of sex development in the fetus, as seen in virilized girls with congenital adrenal hyperplasia (CAH). Despite the important endocrine function of human fetal adrenals, neither normal nor dysregulated adrenal steroidogenesis is understood in detail. Objective Due to significant differences in adrenal steroidogenesis between human and model species (except higher primates), we aimed to establish a human fetal adrenal model that enables examination of both de novo and manipulated adrenal steroidogenesis. Design and Setting Human adrenal tissue from 54 1st trimester fetuses were cultured ex vivo as intact tissue fragments for 7 or 14 days. Main Outcome Measures Model validation included examination of postculture tissue morphology, viability, apoptosis, and quantification of steroid hormones secreted to the culture media measured by liquid chromatography-tandem mass spectrometry. Results The culture approach maintained cell viability, preserved cell populations of all fetal adrenal zones, and recapitulated de novo adrenal steroidogenesis based on continued secretion of steroidogenic intermediates, glucocorticoids, and androgens. Adrenocorticotropic hormone and ketoconazole treatment of ex vivo cultured human fetal adrenal tissue resulted in the stimulation of steroidogenesis and inhibition of androgen secretion, respectively, demonstrating a treatment-specific response. Conclusions Together, these data indicate that ex vivo culture of human fetal adrenal tissue constitutes a novel approach to investigate local effects of pharmaceutical exposures or emerging therapeutic options targeting imbalanced steroidogenesis in adrenal disorders, including CAH.


Sign in / Sign up

Export Citation Format

Share Document