scholarly journals Predicting Rice Yield Under Salinity Stress Using K/Na Ratio Variable in Plant Tissue

2019 ◽  
Vol 50 (11) ◽  
pp. 1321-1329
Author(s):  
Valère Cesse Mel ◽  
Vincent Boubié Bado ◽  
Saliou Ndiaye ◽  
Koffi Djaman ◽  
Delphine Aissata Bama Nati ◽  
...  
2021 ◽  
Vol 10 (01) ◽  
pp. 16-36
Author(s):  
Laila Khatun ◽  
Muhammad Aslam Ali ◽  
Mahmud Hossain Sumon ◽  
Md. Bazlul Islam ◽  
Fahima Khatun

1987 ◽  
Vol 67 (3) ◽  
pp. 619-629 ◽  
Author(s):  
H. H. JANZEN ◽  
C. CHANG

Identification of nutritional disorders in crops growing on saline soils may facilitate the development of breeding or agronomic practices that improve yields in saline areas. An investigation was conducted under controlled environment conditions to identify possible cation deficiencies in barley (Hordeum vulgare 'Gait') grown under sulfate-dominated salinity stress. Soil was artificially salinized to produce a factorial of five salinity levels (ranging from approximately 6.5 to 17.5 dS m−1) and five salt types containing various ratios of Na:Mg:Ca. A control treatment (3.1 dS m−1) was also included. Barley was grown for 75 d and harvested for analysis of dry matter yield and tissue composition. Yield response of barley to salinity stress was not differentially affected by the type of salt used in salinization. Concentrations of sodium and magnesium in the plant tissue were generally increased by salinity stress, but these accumulations did not restrict yield since no consistent relationship was found between the concentrations of these cations and barley yield. Potassium concentration in the plants was inversely related to level of soil salinity, apparently because of an antagonistic effect of sodium, but was not consistently related to barley dry matter yield. Calcium uptake was also suppressed by soil salinity. In contrast to the results observed for other cations, a very strong relationship indicative of a yield response curve was observed between yield and calcium concentration in the plant tissue, particularly when the latter was expressed as a ratio of total cation concentration (R2 = 0.94). Furthermore, calcium concentration in the plant tissue and estimated calcium activity in the soil solution in highly salinized treatments were well below those considered adequate. These results suggest that calcium deficiency may have played an important role in restricting yield under salinity stress. The apparent calcium deficiency induced by salinity stress was attributed to reduced activity of calcium in the soil solution because of precipitation with sulfate and high ionic strength. Key words: Calcium, magnesium, potassium, sodium, salinity


Author(s):  
Khaled D. Alotaibi

Tremendous benefits of biochar (BC) amendment to soil have been reported, including their role in alleviating the impact of salinity stress in plants. The aim of this study was to evaluate the effects of BC produced at 300 ºC (BC300) and 700 ºC (BC700) on the germination rate (GR) and selected growth characteristics of corn plant irrigated with salinized water over a growth period of six weeks. The experimental treatments included: three biochar treatments [BC0 (control, without biocar addition), BC300 and BC700] and three salinity levels of irrigation water [0, 3, and 6 dS m-1]. The biochar was applied at a rate of 3%. The GR decreased with increasing salinity level, which was more evident in the first week. This stress impact was reduced when treated with the BC700 relative to the saline treatments without BC. Both BCs demonstrated contrasting effects on corn growth, nutrient uptake, and Na+ and K+ content in plant tissue. The effect of BC700 treatment on plant height and root length was limited, but the impact of salinity stress on chlorophyll meter readings, chlorophyll fluorescence parameter (Fv/Fm), dry matter yield, and N and P uptake were largely mitigated. It also increased K+ and decreased Na+ content in plant tissue. However, the BC300 treatment adversely affected plant growth parameters at each salinity level. Overall, the BC produced at a higher temperature significantly alleviated the impact of salinity stress on plant growth characteristics, which is probably attributed to their higher surface area and porosity, enhancing their salt ion sorption capacity.


2015 ◽  
Vol 76 (15) ◽  
Author(s):  
Amiri Ebrahim ◽  
Ahmadzadeh Araji Hamidreza ◽  
Wayayok Aimrun ◽  
Rezaei Mojtaba

Guilan is a north province of Iran in which plays an important role in rice production. Since 78.8% of Giulan farmlands are under cultivation of rice, it is the second province ranking as rice producer in Iran. On the other hand, because of dam construction and neighborhood to the Caspian Sea, the volume of fresh water is declining, and is transformed to saline water. In this study, AquaCrop model version 4.0 with additional salinity module was used for calibration and validation in two successive years at Rasht rice Research Institute that is located nearby Rasht city. Five irrigation levels: full irrigation, alternate wetting and drying (AWD), irrigation at 100, 90 and 80% of field capacity (FC) and Four water salinity treatments: fresh water = S0 (EC = 1 dS m-1) while S1, S2, and S3 are saline water with 2, 4, and 6 dS m-1, respectively, were applied for evaluation of rice yield. Statistical analysis, including root mean square error normalized, coefficient of determination (R2), and paired t-tests showed that simulated and observed values are the same at 95% confidence level. Moreover, the FAO AquaCrop model predicted rice yield with more accuracy in less salinity values (EC = 2 dS m-1 and less). Overall, AquaCrop model represented   acceptability in simulation of rice yield under simultaneously water and salinity stress.  


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe

It has been assumed by many involved in freeze-etch or freeze-fracture studies that it would be useless to etch specimens which were cryoprotected by more than 15% glycerol. We presumed that the amount of cryoprotective material exposed at the surface would serve as a contaminating layer and prevent the visualization of fine details. Recent unexpected freeze-etch results indicated that it would be useful to compare complementary replicas in which one-half of the frozen-fractured specimen would be shadowed and replicated immediately after fracturing whereas the complement would be etched at -98°C for 1 to 10 minutes before being shadowed and replicated.Standard complementary replica holders (Steere, 1973) with hinges removed were used for this study. Specimens consisting of unfixed virus-infected plant tissue infiltrated with 0.05 M phosphate buffer or distilled water were used without cryoprotectant. Some were permitted to settle through gradients to the desired concentrations of different cryoprotectants.


Author(s):  
R. D. Sjolund ◽  
C. Y. Shih

The differentiation of phloem in plant tissue cultures offers a unique opportunity to study the development and structure of sieve elements in a manner that avoids the injury responses associated with the processing of similar elements in intact plants. Short segments of sieve elements formed in tissue cultures can be fixed intact while the longer strands occuring in whole plants must be cut into shorter lengths before processing. While iyuch controversy surrounds the question of phloem function in tissue cultures , sieve elements formed in these cultured cells are structurally similar to those of Intact plants. We are particullarly Interested In the structure of the plasma membrane and the peripheral ER in these cells because of their possible role in the energy-dependent active transport of sucrose into the sieve elements.


Planta Medica ◽  
2013 ◽  
Vol 79 (05) ◽  
Author(s):  
M Mujeeb ◽  
M Amir ◽  
AS Nadeem ◽  
M Aqil ◽  
AK Najmi ◽  
...  

2018 ◽  
Vol 51 (1) ◽  
Author(s):  
Mehdi Taghizadegan ◽  
Mahmoud Toorchi ◽  
Mohammad Moghadam Vahed ◽  
Samar Khayamim

Sign in / Sign up

Export Citation Format

Share Document