The Safe Soluble Compound Dehydroascorbic Acid Inhibits Various Upstream and Downstream Effectors of PI3K and KRAS Signaling Pathways in Undruggable PIK3CA/KRAS-Mutant Colorectal Cancer Stem-Like Cells

2020 ◽  
pp. 1-16
Author(s):  
Fahimeh Kalbkhani ◽  
Ali Pirnejad ◽  
Sohrab Sam ◽  
Mohammad Reza Sam
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Camille Ternet ◽  
Christina Kiel

AbstractThe intestinal epithelium acts as a physical barrier that separates the intestinal microbiota from the host and is critical for preserving intestinal homeostasis. The barrier is formed by tightly linked intestinal epithelial cells (IECs) (i.e. enterocytes, goblet cells, neuroendocrine cells, tuft cells, Paneth cells, and M cells), which constantly self-renew and shed. IECs also communicate with microbiota, coordinate innate and adaptive effector cell functions. In this review, we summarize the signaling pathways contributing to intestinal cell fates and homeostasis functions. We focus especially on intestinal stem cell proliferation, cell junction formation, remodelling, hypoxia, the impact of intestinal microbiota, the immune system, inflammation, and metabolism. Recognizing the critical role of KRAS mutants in colorectal cancer, we highlight the connections of KRAS signaling pathways in coordinating these functions. Furthermore, we review the impact of KRAS colorectal cancer mutants on pathway rewiring associated with disruption and dysfunction of the normal intestinal homeostasis. Given that KRAS is still considered undruggable and the development of treatments that directly target KRAS are unlikely, we discuss the suitability of targeting pathways downstream of KRAS as well as alterations of cell extrinsic/microenvironmental factors as possible targets for modulating signaling pathways in colorectal cancer.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Crescenzo Massaro ◽  
Elham Safadeh ◽  
Giulia Sgueglia ◽  
Hendrik G. Stunnenberg ◽  
Lucia Altucci ◽  
...  

Despite substantial progress in cancer therapy, colorectal cancer (CRC) is still the third leading cause of cancer death worldwide, mainly due to the acquisition of resistance and disease recurrence in patients. Growing evidence indicates that deregulation of hormone signaling pathways and their cross-talk with other signaling cascades inside CRC cells may have an impact on therapy resistance. MicroRNAs (miRNAs) are small conserved non-coding RNAs thatfunction as negative regulators in many gene expression processes. Key studies have identified miRNA alterations in cancer progression and drug resistance. In this review, we provide a comprehensive overview and assessment of miRNAs role in hormone signaling pathways in CRC drug resistance and their potential as future targets for overcoming resistance to treatment.


2018 ◽  
Vol 6 (4) ◽  
pp. 28 ◽  
Author(s):  
Daniel Matúš ◽  
Simone Prömel

Many vital processes during C. elegans development, especially the establishment and maintenance of cell polarity in embryogenesis, are controlled by complex signaling pathways. G protein-coupled receptors (GPCRs), such as the four Frizzled family Wnt receptors, are linchpins in regulating and orchestrating several of these mechanisms. However, despite being GPCRs, which usually couple to G proteins, these receptors do not seem to activate classical heterotrimeric G protein-mediated signaling cascades. The view on signaling during embryogenesis is further complicated by the fact that heterotrimeric G proteins do play essential roles in cell polarity during embryogenesis, but their activity is modulated in a predominantly GPCR-independent manner via G protein regulators such as GEFs GAPs and GDIs. Further, the triggered downstream effectors are not typical. Only very few GPCR-dependent and G protein-mediated signaling pathways have been unambiguously defined in this context. This unusual and highly intriguing concept of separating GPCR function and G-protein activity, which is not restricted to embryogenesis in C. elegans but can also be found in other organisms, allows for essential and multi-faceted ways of regulating cellular communication and response. Although its relevance cannot be debated, its impact is still poorly discussed, and C. elegans is an ideal model to understand the underlying principles.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4787
Author(s):  
Katarzyna Papierska ◽  
Violetta Krajka-Kuźniak ◽  
Jarosław Paluszczak ◽  
Robert Kleszcz ◽  
Marcin Skalski ◽  
...  

The study aimed to evaluate the possible modulation of Nrf2, NF-ĸB and STAT3 signaling pathways in the colorectal cancer (CRC) cells line DLD-1 and HCT116 by secondary metabolites of lichens. An attempt was made to indicate the most promising targets in these signaling pathways. Attention was also paid to the effects of the compounds tested on CRC cells using anakoinosis—that is, simultaneous analysis of several signaling pathways. The effects of the tested natural compounds on the activity of selected transcriptional factors related to CRC were analyzed by Western blot and RT-PCR assays. The highest activity against CRC cells was shown by physodic and salazinic acids from the studied secondary metabolites of lichens. As a result, an increase in the activation of transcription factor Nrf2 and the expression of its selected target genes was observed. Physodic and salazinic acids induced the opposite effect in relation to the NF-κB and STAT3 pathways. These results confirmed our earlier observations that lichen-derived compounds have the ability to modulate signaling pathway networks. While caperatic acid affected Wnt/β-catenin to the most extent, salazinic acid was the most potent modulator of Nrf2, NF-κB and STAT3 pathways. Physodic acid seemed to affect all the investigated pathways.


2018 ◽  
Vol 18 (4) ◽  
pp. 328-336 ◽  
Author(s):  
Shirin Eyvazi ◽  
Bahram Kazemi ◽  
Siavoush Dastmalchi ◽  
Mojgan Bandehpour

CD24 (cluster of differentiation 24) is a small heavy glycosylated protein, which is overexpressed in many cancer and some cancer stem cells and is associated with the development, invasion, and metastasis of cancer cells. The exact role of CD24 in these processes is not fully understood, however, in this article, it has been tried to present a collection of cancer-related mechanisms attributed to CD24. Based on the literature, CD24 dis-regulates different signaling pathways in various cancer cells, including; Src kinases, STAT3, EGFR, Wnt/β-catenin and MAPK. Src kinases play an important role in the signaling pathways which activate p38 MAPK and STAT3 pathways. Akt and ERK are downstream effectors of CD24-activated EGFR, which promote cell proliferation, invasion and metastasis. CD24 increases the expression of HER2 by the activation of NF-κB transcription factor. Moreover, CD24 up-regulates the expression of miR-21 oncomir through the activation of Src kinases. Identification of the details of these pathways and also new pathways will help researchers to explore new CD24 targeted therapies.


Sign in / Sign up

Export Citation Format

Share Document