The Antioxidant Properties of Thyme (Thymus zygisL.) Essential Oil: an Inhibitor of Lipid Peroxidation and a Free Radical Scavenger

2002 ◽  
Vol 14 (3) ◽  
pp. 210-215 ◽  
Author(s):  
K. A. Youdim ◽  
S. G. Deans ◽  
H. J. Finlayson
2015 ◽  
Vol 98 (4) ◽  
pp. 866-870 ◽  
Author(s):  
Violetta Kozik ◽  
Krystyna Jarzembek ◽  
Agnieszka Jędrzejowska ◽  
Andrzej Bąk ◽  
Justyna Polak ◽  
...  

Abstract Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r) = 0.90 and determination coefficient (r2) = 0.81 (P <0.05).


2006 ◽  
Vol 22 (4) ◽  
pp. 147-156 ◽  
Author(s):  
Qingsu Xia ◽  
Ming W Chou ◽  
Jun J Yin ◽  
Paul C Howard ◽  
Hongtao Yu ◽  
...  

Polycyclic aromatic hydrocarbons (PAHs) are widespread genotoxic environmental pollutants, which require metabolic activation in order to exert biological activities, including mutagenicity and carcinogenicity. Photoactivation is another activation pathway that can lead to PAH genotoxicity. In this paper, we demonstrate that photoirradiation of a series of representative PAHs, with and without bearing a methyl substituent, with UVA light in the presence of methyl linoleate resulted in the formation of methyl linoleate hydroperoxides (a lipid peroxide). The lipid peroxide formation was inhibited by dithiothreitol (DTT) (free radical scavenger), NaN3 (singlet oxygen and free radical scavenger), and superoxide dismutase (SOD) (superoxide scavenger), but was enhanced by the presence of deuterium oxide (D2O) (extends singlet oxygen lifetime). These results suggest that photoirradiation of PAHs by UVA light generates reactive oxygen species (ROS), which induce lipid peroxidation.


1979 ◽  
Vol 178 (2) ◽  
pp. 509-512 ◽  
Author(s):  
E Gravela ◽  
E Albano ◽  
M U Dianzani ◽  
G Poli ◽  
T F Slater

The effects of carbon tetrachloride on protein and lipoprotein secretion, and on lipid peroxidation, have been investigated in isolated rat hepatocytes. It was found that although the free-radical scavenger promethazine completely suppressed the increased peroxidation produced by carbon tetrachloride, it had no effect on the inhibitory action of carbon tetrachloride on lipoprotein secretion. In consequence, the latter effect of carbon tetrachloride does not appear to be mediated through a peroxidative stage.


2008 ◽  
Vol 36 (01) ◽  
pp. 197-207 ◽  
Author(s):  
Fang-Yun Sun ◽  
Xiu-Ping Chen ◽  
Jin-Hua Wang ◽  
Hai-Lin Qin ◽  
Su-Rong Yang ◽  
...  

This study was designed to investigate the antioxidant and free radical scavenging capacities of arjunic acid, an aglycone obtained from the fruit of medicine Terminalia Fruit. Liver microsomes, mitochondria, and red blood cells (RBCs) were prepared from Wistar rats. The antioxidant capacity was determined by the inhibitory effect on lipid peroxidation, hydrogen peroxide induced RBCs hemolysis, and RBCs autoxidative hemolysis. The free radical scavenging activity was tested by DPPH method and 2′,7′-dichlorodihydrofluoresc in diacetate (DCFH2-DA) assay. Ascorbic acid was chosen as the positive controls. Results showed that arjunic acid was a strong antioxidant and a free radical scavenger, more potent than ascorbic acid, in microsomes lipid peroxidation, DPPH, hydrogen peroxide induced RBCs hemolysis, and (DCFH2-DA) assay (p < 0.05). However, no significant difference was observed in the RBCs autoxidative hemolysis assay (p > 0.05).


2014 ◽  
Vol 34 (9) ◽  
pp. 904-910 ◽  
Author(s):  
S Tunali ◽  
S Kahraman ◽  
R Yanardag

Valproic acid (2-propyl-pentanoic acid, VPA) is the most widely prescribed antiepileptic drug due to its ability to treat a broad spectrum of seizure types. VPA exhibits various side effects such as organ toxicity, teratogenicity, and visual disturbances. S-Methylmethioninesulfonium is a derivative of the amino acid methionine and it is widely referred to as vitamin U (Vit U). This study was aimed to investigate the effects of Vit U on lens damage parameters of rats exposed to VPA. Female Sprague Dawley rats were divided into four groups. Group I comprised control animals. Group II included control rats supplemented with Vit U (50 mg/kg/day) for 15 days. Group III was given only VPA (500 mg/kg/day) for 15 days. Group IV was given VPA + Vit U (in same dose and time). Vit U was given to rats by gavage and VPA was given intraperitoneally. On the 16th day of experiment, all the animals which were fasted overnight were killed. Lens was taken from animals, homogenized in 0.9% saline to make up to 10% (w/v) homogenate. The homogenates were used for protein, glutathione, lipid peroxidation levels, and antioxidant enzymes activities. Lens lipid peroxidation levels and aldose reductase and sorbitol dehydrogenase activities were increased in VPA group. On the other hand, glutathione levels, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione- S-transferase, and paraoxonase activities were decreased in VPA groups. Treatment with Vit U reversed these effects. This study showed that Vit U exerted antioxidant properties and may prevent lens damage caused by VPA.


2020 ◽  
Vol 10 (9) ◽  
pp. 592
Author(s):  
Elizabeth Ruiz-Sánchez ◽  
José Pedraza-Chaverri ◽  
Omar N. Medina-Campos ◽  
Perla D. Maldonado ◽  
Patricia Rojas

Depression is a psychiatric disorder, and oxidative stress is a significant mechanism of damage in this mood disorder. It is characterized by an enhancement of oxidative stress markers and low concentrations of endogenous antioxidants, or antioxidants enzymes. This suggests that antioxidants could have an antidepressant effect. S-allyl cysteine (SAC) is a compound with antioxidant action or free radical scavenger capacity. The purpose of the current research was to evaluate the antidepressant-like effect as well as the antioxidant role of SAC on a preclinical test, using the Porsolt forced swim test (FST). SAC (30, 70, 120, or 250 mg/kg, ip) was administered to male BALB/c mice daily for 17 days, followed by the FST at day 18. Oxidative stress markers (reactive oxygen species, superoxide production, lipid peroxidation, and antioxidant enzymes activities) were analyzed in the midbrain, prefrontal cortex, and hippocampus. SAC (120 mg/kg) attenuated the immobility scores (44%) in the FST, and protection was unrelated to changes in locomotor activity. This antidepressant-like effect was related to decreased oxidative stress, as indicated by lipid peroxidation and manganese-superoxide dismutase (Mn-SOD) activity in the hippocampus. SAC exerts an antidepressant-like effect that correlated, in part, with preventing oxidative damage in hippocampus.


2000 ◽  
Vol 1501 (2-3) ◽  
pp. 149-161 ◽  
Author(s):  
Christopher M. Lauderback ◽  
Adam M. Breier ◽  
Janna Hackett ◽  
Sridhar Varadarajan ◽  
Jessica Goodlett-Mercer ◽  
...  

2020 ◽  
Vol 04 (05) ◽  
pp. 17-20
Author(s):  
Mirza Mikayil Aliyev ◽  
◽  
Ulduz Yunis Safarova ◽  
Shafiqa Jahangir Jafarova ◽  
◽  
...  

Edaravone is the first free radical scavenger which approved clinically and has an ability to decrease the level of free radicals in cells. Edaravone is a strong antioxidant, which can protect different cells (e.g. endothelial cells) against damage by ROS by inhibiting the lipoxygenase metabolism of arachidonic acid, by trapping hydroxyl radicals, by increasing prostacyclin production, by inhibiting alloxan-induced lipid peroxidation, etc. Because of that, Edaravone is used in treatment of diseases which are associated with oxidative stress. Key words: edaravone, free radical, antioxidant, neuroprotective agent, oxidative stress


Sign in / Sign up

Export Citation Format

Share Document