Influence of Thermal Cathode Mode on Properties of Coatings Deposited from Metal Plasma of Vacuum-Arc Discharge

2002 ◽  
Vol 10 (3) ◽  
pp. 179-186 ◽  
Author(s):  
V. G. Kuznezov ◽  
A. A. Lisenkov ◽  
V. A. Pavlova ◽  
N. Z. Vetrov
2021 ◽  
Vol 33 (3) ◽  
pp. 037103
Author(s):  
Jia Tian ◽  
Wenzheng Liu ◽  
Wenjun Zhang ◽  
Xitao Jiang

Author(s):  
A A Rikov ◽  
M I Yurchenkov ◽  
A A Lisenkov ◽  
D K Kostrin

2017 ◽  
Vol 808 ◽  
pp. 012005 ◽  
Author(s):  
A A Lisenkov ◽  
S A Martsinukov ◽  
V V Chernigovskiy ◽  
D K Kostrin ◽  
E A Smirnov

1995 ◽  
Vol 396 ◽  
Author(s):  
I.G. Brown ◽  
A. Anders ◽  
S. Anders ◽  
M.R. Dickinson ◽  
R.A. MacGill ◽  
...  

AbstractIon implantation by intense beams of metal ions can be accomplished using the dense metal plasma formed in a vacuum arc discharge embodied either in a vacuum arc ion source or in a ‘metal plasma immersion’ configuration. In the former case high energy metal ion beams are formed and implantation is done in a more-or-less conventional way, and in the latter case the substrate is immersed in the plasma and repetitively pulse-biased so as to accelerate the ions at the high voltage plasma sheath formed at the substrate. A number of advances have been made in the last few years, both in plasma technology and in the surface modification procedures, that enhance the effectiveness and versatility of the methods, including for example: controlled increase of the ion charge states produced; operation in a dual metal-gaseous ion species mode; very large area beam formation; macroparticle filtering; and the development of processing regimes for optimizing adhesion, morphology and structure. These complementary ion processing techniques provide the plasma tools for doing ion surface modification over a very wide parameter regime, from ‘pure’ ion implantation at energies approaching the MeV level, through ion mixing at energies in the ∼1 to ∼100 keV range, to IBAD-like processing at energies from a few tens of eV to a few keV. Here we review the methods, describe a number of recent developments, and outline some of the surface modification applications to which the methods have been put.


2016 ◽  
Vol 870 ◽  
pp. 371-376 ◽  
Author(s):  
D.K. Kostrin ◽  
A.A. Lisenkov

To implement the plasmochemical synthesis of transition metals (Ti, Zr, Mo, W) carbide compounds in a plasma flux of the vacuum arc the discharge carbonaceous working gas is infused. It is shown that the composition of the initial carbonaceous gas defines both the carbon output, and the nature and course of the carbide compounds formation chemical reaction. The composition analysis of the plasma flux in the course of the coating evaporation was carried out by means of the developed emissive spectral analyzer. The result shows that a considerable part of transition metals carbide phases has wide zones of homogeneity within which the change in the carbon content happens without the crystalline grid reorganization. The work reveals and analyzes the factors defining quality of the received carbide compounds (TiC, ZrC, MoC, WC) of refractory metals in a flux of metal plasma of the vacuum arc discharge.


2016 ◽  
Vol 843 ◽  
pp. 278-283 ◽  
Author(s):  
D.K. Kostrin ◽  
A.A. Lisenkov

In this article features of application of the vacuum arc discharge for modification of surfaces are considered. The complication of o this process simulation due to its complexity and tight correlation between different parameters is explained. The mathematical model describing the interaction of a plasma flux with controlling system is offered. The need of cleaning plasma flux from drop fraction in the process of metal coatings deposition is shown. The properties of coatings received by means of a vacuum arc method are considered.


Author(s):  
L. Wan ◽  
R. F. Egerton

INTRODUCTION Recently, a new compound carbon nitride (CNx) has captured the attention of materials scientists, resulting from the prediction of a metastable crystal structure β-C3N4. Calculations showed that the mechanical properties of β-C3N4 are close to those of diamond. Various methods, including high pressure synthesis, ion beam deposition, chemical vapor deposition, plasma enhanced evaporation, and reactive sputtering, have been used in an attempt to make this compound. In this paper, we present the results of electron energy loss spectroscopy (EELS) analysis of composition and bonding structure of CNX films deposited by two different methods.SPECIMEN PREPARATION Specimens were prepared by arc-discharge evaporation and reactive sputtering. The apparatus for evaporation is similar to the traditional setup of vacuum arc-discharge evaporation, but working in a 0.05 torr ambient of nitrogen or ammonia. A bias was applied between the carbon source and the substrate in order to generate more ions and electrons and change their energy. During deposition, this bias causes a secondary discharge between the source and the substrate.


2021 ◽  
pp. 138731
Author(s):  
Bert Scheffel ◽  
Olaf Zywitzki ◽  
Thomas Preußner ◽  
Torsten Kopte

Sign in / Sign up

Export Citation Format

Share Document