scholarly journals Isolation of a novel leucine-rich repeat receptor-like kinase (OsLRR2) gene from rice and analysis of its relation to abiotic stress responses

2016 ◽  
Vol 31 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Yongrong Liao ◽  
Changqiong Hu ◽  
Xuewei Zhang ◽  
Xufeng Cao ◽  
Zhengjun Xu ◽  
...  
Author(s):  
Yusuke Saijo ◽  
Eliza Loo ◽  
Yuri Tajima ◽  
Kohji Yamada ◽  
Shota Kido ◽  
...  

In plants, a first layer of inducible immunity is conferred by pattern recognition receptors (PRRs) that bind microbe- and damage-associated molecular patterns (MAMPs/DAMPs, respectively) to activate pattern-triggered immunity (PTI). PTI is strengthened or followed by another potent form of immunity when intracellular receptors recognize pathogen effectors, termed effector-triggered immunity (ETI). Immunity signaling regulators have been reported to influence abiotic stress responses as well, yet the governing principles and mechanisms remain ambiguous. Here, we report that PRRs of a leucine-rich repeat ectodomain also confer salt tolerance in Arabidopsis thaliana, following recognition of cognate ligands, such as bacterial flagellin (flg22 epitope) and EF-Tu (elf18 epitope), and the endogenous Pep peptides. Pattern-triggered salt tolerance (PTST) requires authentic PTI signaling components, namely the PRR-associated kinases BAK1 and BIK1, and the NADPH oxidase RBOHD. Exposure to salt stress induces the release of Pep precursors, pointing to the involvement of the endogenous immunogenic peptides in developing plant tolerance to high salinity. Transcriptome profiling reveals an inventory of PTST target genes, which increase or acquire salt responsiveness following a pre-exposure to immunogenic patterns. In good accordance, plants challenged with non-pathogenic bacteria also acquired salt tolerance in a manner dependent on PRRs. Our findings provide insight into signaling plasticity underlying biotic-abiotic stress cross-tolerance in plants conferred by PRRs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jack Rhodes ◽  
Huanjie Yang ◽  
Steven Moussu ◽  
Freddy Boutrot ◽  
Julia Santiago ◽  
...  

AbstractPlant genomes encode hundreds of receptor kinases and peptides, but the number of known plant receptor-ligand pairs is limited. We report that the Arabidopsis leucine-rich repeat receptor kinase LRR-RK MALE DISCOVERER 1-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2) is the receptor for the SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) phytocytokines. MIK2 is necessary and sufficient for immune responses triggered by multiple SCOOP peptides, suggesting that MIK2 is the receptor for this divergent family of peptides. Accordingly, the SCOOP12 peptide directly binds MIK2 and triggers complex formation between MIK2 and the BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) co-receptor. MIK2 is required for resistance to the important root pathogen Fusarium oxysporum. Notably, we reveal that Fusarium proteomes encode SCOOP-like sequences, and corresponding synthetic peptides induce MIK2-dependent immune responses. These results suggest that MIK2 may recognise Fusarium-derived SCOOP-like sequences to induce immunity against Fusarium. The definition of SCOOPs as MIK2 ligands will help to unravel the multiple roles played by MIK2 during plant growth, development and stress responses.


2012 ◽  
Vol 5 (5) ◽  
pp. 1113-1124 ◽  
Author(s):  
Yariv Brotman ◽  
Udi Landau ◽  
Smadar Pnini ◽  
Jan Lisec ◽  
Salma Balazadeh ◽  
...  

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hanshuai Li ◽  
Xiaodong Han ◽  
Xinxiang Liu ◽  
Miaoyi Zhou ◽  
Wen Ren ◽  
...  

Abstract Background ERECTA (ER) is a leucine-rich repeat-receptor-like kinase gene (LRR-RLK) encoding a protein isolated from Arabidopsis. Although the regulatory functions of ER genes have been widely explored in plant development and disease resistance, their roles in drought stress responses remain to be clarified. Results In this study, we cloned and characterized two ER genes, SbER1–1 and SbER2–1, from the drought-tolerant model plant sorghum (Sorghum bicolor L.). Under drought stress, the two genes were expressed in the leaves and stems but not in the roots, and SbER2–1 transcript accumulation in the stem was increased. SbER2–1 was localized both on the plasma membrane and in the chloroplast. Moreover, SbER2–1 expression in Arabidopsis and maize conferred increased drought tolerance, especially in regard to water-use efficiency, increasing the net photosynthetic rate in maize under drought stress. Based on RNA-Seq analysis together with the physiological data, we conclude that the transgenic maize plants have upregulated phenylpropanoid metabolism and increased lignin accumulation under drought stress. Conclusions Our results demonstrate that SbER2–1 plays an important role in response to drought stress. Furthermore, photosynthetic systems and phenylpropanoid metabolism are implicated in SbER2–1-mediated drought stress tolerance mechanisms. The use of genetic engineering to regulate SbER2–1 expression in plants and to breed new varieties tolerant to drought is a research field full of potential.


Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 445
Author(s):  
Morena M. Tinte ◽  
Kekeletso H. Chele ◽  
Justin J. J. van der Hooft ◽  
Fidele Tugizimana

Plants are constantly challenged by changing environmental conditions that include abiotic stresses. These are limiting their development and productivity and are subsequently threatening our food security, especially when considering the pressure of the increasing global population. Thus, there is an urgent need for the next generation of crops with high productivity and resilience to climate change. The dawn of a new era characterized by the emergence of fourth industrial revolution (4IR) technologies has redefined the ideological boundaries of research and applications in plant sciences. Recent technological advances and machine learning (ML)-based computational tools and omics data analysis approaches are allowing scientists to derive comprehensive metabolic descriptions and models for the target plant species under specific conditions. Such accurate metabolic descriptions are imperatively essential for devising a roadmap for the next generation of crops that are resilient to environmental deterioration. By synthesizing the recent literature and collating data on metabolomics studies on plant responses to abiotic stresses, in the context of the 4IR era, we point out the opportunities and challenges offered by omics science, analytical intelligence, computational tools and big data analytics. Specifically, we highlight technological advancements in (plant) metabolomics workflows and the use of machine learning and computational tools to decipher the dynamics in the chemical space that define plant responses to abiotic stress conditions.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Peng Jin ◽  
Shiqi Gao ◽  
Long He ◽  
Miaoze Xu ◽  
Tianye Zhang ◽  
...  

Histone acetylation is a dynamic modification process co-regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although HDACs play vital roles in abiotic or biotic stress responses, their members in Triticumaestivum and their response to plant viruses remain unknown. Here, we identified and characterized 49 T. aestivumHDACs (TaHDACs) at the whole-genome level. Based on phylogenetic analyses, TaHDACs could be divided into 5 clades, and their protein spatial structure was integral and conserved. Chromosomal location and synteny analyses showed that TaHDACs were widely distributed on wheat chromosomes, and gene duplication has accelerated the TaHDAC gene family evolution. The cis-acting element analysis indicated that TaHDACs were involved in hormone response, light response, abiotic stress, growth, and development. Heatmaps analysis of RNA-sequencing data showed that TaHDAC genes were involved in biotic or abiotic stress response. Selected TaHDACs were differentially expressed in diverse tissues or under varying temperature conditions. All selected TaHDACs were significantly upregulated following infection with the barley stripe mosaic virus (BSMV), Chinese wheat mosaic virus (CWMV), and wheat yellow mosaic virus (WYMV), suggesting their involvement in response to viral infections. Furthermore, TaSRT1-silenced contributed to increasing wheat resistance against CWMV infection. In summary, these findings could help deepen the understanding of the structure and characteristics of the HDAC gene family in wheat and lay the foundation for exploring the function of TaHDACs in plants resistant to viral infections.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 413
Author(s):  
Qing Guo ◽  
Li Li ◽  
Kai Zhao ◽  
Wenjing Yao ◽  
Zihan Cheng ◽  
...  

SQUAMOSA promoter binding protein (SBP) is a kind of plant-specific transcription factor, which plays a crucial role in stress responses and plant growth and development by activating and inhibiting the transcription of multiple target genes. In this study, a total of 30 SBP genes were identified from Populus trichocarpa genome and randomly distributed on 16 chromosomes in poplar. According to phylogenetic analysis, the PtSBPs can be divided into six categories, and 14 out of the genes belong to VI. Furthermore, the SBP genes in VI were proved to have a targeting relationship with miR156. The homeopathic element analysis showed that the promoters of poplar SBP genes mainly contain the elements involved in growth and development, abiotic stress and hormone response. In addition, there existed 10 gene segment duplication events in the SBP gene duplication analysis. Furthermore, there were four poplar and Arabidopsis orthologous gene pairs among the poplar SBP members. What is more, poplar SBP gene family has diverse gene expression pattern under salt stress. As many as nine SBP members were responding to high salt stress and six members possibly participated in growth development and abiotic stress. Yeast two-hybrid experiments indicated that PtSBPs can form heterodimers to interact in the transcriptional regulatory networks. The genome-wide analysis of poplar SBP family will contribute to function characterization of SBP genes in woody plants.


2013 ◽  
Vol 55 (10) ◽  
pp. 892-901 ◽  
Author(s):  
Lianyu Yuan ◽  
Xuncheng Liu ◽  
Ming Luo ◽  
Songguang Yang ◽  
Keqiang Wu

Sign in / Sign up

Export Citation Format

Share Document