Ab-initiostudy of long-period superstructures and anti-phase boundaries in Al-richγ-TiAl (L10)-based alloys

Author(s):  
P.S. Ghosh ◽  
A. Arya ◽  
U.D. Kulkarni ◽  
G.K. Dey ◽  
S. Hata ◽  
...  
Keyword(s):  
1990 ◽  
Vol 183 ◽  
Author(s):  
D. Broddin ◽  
C. Leroux ◽  
G. Van Tendeloo

AbstractRecent results are presented which indicate that the core structure of anti-phase boundaries is sensitive to changes in temperature and alloy composition. Isolated anti-phase boundaries in CoPt3 are found to undergo a structural change when the order-disorder transition temperature is approached from below. Periodic anti-phase boundaries of the long period structures in Cu3Pd, Au3Zn and Au3Cu exhibit similar phenomena. Detailed results on the core structure of periodic boundaries in alloys annealed close to the order-disorder transition are compared to the results of a Monte Carlo analysis for finite temperatures of (100) anti-phase boundaries in L12 alloys.


1966 ◽  
Vol 25 ◽  
pp. 197-222 ◽  
Author(s):  
P. J. Message

An analytical discussion of that case of motion in the restricted problem, in which the mean motions of the infinitesimal, and smaller-massed, bodies about the larger one are nearly in the ratio of two small integers displays the existence of a series of periodic solutions which, for commensurabilities of the typep+ 1:p, includes solutions of Poincaré'sdeuxième sortewhen the commensurability is very close, and of thepremière sortewhen it is less close. A linear treatment of the long-period variations of the elements, valid for motions in which the elements remain close to a particular periodic solution of this type, shows the continuity of near-commensurable motion with other motion, and some of the properties of long-period librations of small amplitude.To extend the investigation to other types of motion near commensurability, numerical integrations of the equations for the long-period variations of the elements were carried out for the 2:1 interior case (of which the planet 108 “Hecuba” is an example) to survey those motions in which the eccentricity takes values less than 0·1. An investigation of the effect of the large amplitude perturbations near commensurability on a distribution of minor planets, which is originally uniform over mean motion, shows a “draining off” effect from the vicinity of exact commensurability of a magnitude large enough to account for the observed gap in the distribution at the 2:1 commensurability.


1977 ◽  
Vol 36 ◽  
pp. 69-74

The discussion was separated into 3 different topics according to the separation made by the reviewer between the different periods of waves observed in the sun :1) global modes (long period oscillations) with predominantly radial harmonic motion.2) modes with large coherent - wave systems but not necessarily global excitation (300 s oscillation).3) locally excited - short period waves.


Author(s):  
A. Baronnet ◽  
M. Amouric

The origin of mica polytypes has long been a challenging problem for crystal- lographers, mineralogists and petrologists. From the petrological point of view, interest in this field arose from the potential use of layer stacking data to furnish further informations about equilibrium and/or kinetic conditions prevailing during the crystallization of the widespread mica-bearing rocks. From the compilation of previous experimental works dealing with the occurrence domains of the various mica "polymorphs" (1Mr, 1M, 2M1, 2M2 and 3T) within water-pressure vs temperature fields, it became clear that most of these modifications should be considered as metastable for a fixed mica species. Furthermore, the natural occurrence of long-period (or complex) polytypes could not be accounted for by phase considerations. This highlighted the need of a more detailed kinetic approach of the problem and, in particular, of the role growth mechanisms of basal faces could play in this crystallographic phenomenon.


Author(s):  
S. Shinozaki ◽  
J. W. Sprys

In reaction sintered SiC (∽ 5um average grain size), about 15% of the grains were found to have long-period structures, which were identifiable by transmission electron microscopy (TEM). In order to investigate the stability of the long-period polytypes at high temperature, crystal structures as well as microstructural changes in the long-period polytypes were analyzed as a function of time in isothermal annealing.Each polytype was analyzed by two methods: (1) Electron diffraction, and (2) Electron micrograph analysis. Fig. 1 shows microdensitometer traces of ED patterns (continuous curves) and calculated intensities (vertical lines) along 10.l row for 6H and 84R (Ramsdell notation). Intensity distributions were calculated based on the Zhdanov notation of (33) for 6H and [ (33)3 (32)2 ]3 for 84R. Because of the dynamical effect in electron diffraction, the observed intensities do not exactly coincide with those intensities obtained by structure factor calculations. Fig. 2 shows the high resolution TEM micrographs, where the striped patterns correspond to direct resolution of the structural lattice periodicities of 6H and 84R structures and the spacings shown in the figures are as expected for those structures.


Author(s):  
Y. Kouh Simpson ◽  
C. B. Carter

The structure of spinel/alumina phase boundaries has recently been studied using the selected- area diffraction technique. It has been found that there exist several dominant topotactic relationships; of these, the two most common situations are when the {111} plane of spinel is parallel to either the (0001) plane or the {1120} plane of alumina. In both of these cases, it has been found that there is often a small rotation from exact topotaxy (typically 0° to 2° but with larger rotations possible) which partially eliminates the need for misfit dislocations. This rotation is a special phenomenon that may be unique to non-metallic interfaces such as phase boundaries in ceramics. In this report, a special spinel/alumina interface in which a large rotation from the exact topotaxy exists between the (111) plane of spinel and the (OOOl) plane of alumina is discussed.


Author(s):  
P. J. Goodhew

Cavity nucleation and growth at grain and phase boundaries is of concern because it can lead to failure during creep and can lead to embrittlement as a result of radiation damage. Two major types of cavity are usually distinguished: The term bubble is applied to a cavity which contains gas at a pressure which is at least sufficient to support the surface tension (2g/r for a spherical bubble of radius r and surface energy g). The term void is generally applied to any cavity which contains less gas than this, but is not necessarily empty of gas. A void would therefore tend to shrink in the absence of any imposed driving force for growth, whereas a bubble would be stable or would tend to grow. It is widely considered that cavity nucleation always requires the presence of one or more gas atoms. However since it is extremely difficult to prepare experimental materials with a gas impurity concentration lower than their eventual cavity concentration there is little to be gained by debating this point.


Sign in / Sign up

Export Citation Format

Share Document