Nanostructures Fabrication on Ta Thin Film Using Atomic Force Microscope Lithography

2006 ◽  
Vol 445 (1) ◽  
pp. 115/[405]-118/[408]
Author(s):  
Sunwoo Lee ◽  
Haiwon Lee ◽  
Do Haing Lee ◽  
Byung-Jae Park ◽  
Geun Young Yeom
2016 ◽  
Vol 23 (5) ◽  
pp. 1110-1117 ◽  
Author(s):  
M. V. Vitorino ◽  
Y. Fuchs ◽  
T. Dane ◽  
M. S. Rodrigues ◽  
M. Rosenthal ◽  
...  

A compact high-speed X-ray atomic force microscope has been developed forin situuse in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.


2014 ◽  
Vol 939 ◽  
pp. 671-678
Author(s):  
Jen Ching Huang ◽  
Ho Chang ◽  
Hui Ti Ling

This paper mainly focuses in the use of an atomic force microscope, research about the nanooxidation technique of conductive diamond-like carbon thin film in the atmospheric environment. The hardness, high wear resistance and chemical stability of diamond-like carbon thin film is high, and coefficient of friction is low, it is very suitable as a mold material for nanoscale mold. However, tool can only use a diamond cutter to machine the high hardness diamond-like carbon by traditional hard machining method, and tool life is not long. To overcome this drawback, the paper proposed an atomic force microscope (AFM) as a platform, a conductive AFM probe for tool under atmospheric conditions, and imposed nanooxidation technique on conductive diamond-like carbon thin film using electroluminescent etching to carry out nanofabrication processing. During the nanofabrication process, by changing the various processing parameters, such as applied voltage, repeated nanooxidation times and probe speed, etc., in order to understand the effect of processing parameters. The experimental results show, the nanooxidation technique can be carried out nanofabrication on conductive diamond-like carbon thin film successfully. And found that applied voltage, repeated nanooxidation times and probe speed all for the groove depth on the conductive diamond-like carbon thin films have significant influence. Additionally, this study successfully created a nanopattern. Therefore, the adequate machinability of DLC coating was achieved successfully in this study, indicating a promising application in the fabrication of nanopatterns on a nanoscale.


Author(s):  
H. Yamashita ◽  
Y. Hata

Abstract It is becoming more important to observe structures and failed sites in LSIs. An atomic force microscope (AFM) can obtain atomic scale topographic images on sample surfaces. To analyze failures in LSIs, several treatments for the AFM observation, such as wet etching and mechanical polishing for a crosssectional imaging, have been proposed so far. A good correlation of AFM images using FIB anisotropic etch with those acquired by conventional technique such as SIM and TEM has been demonstrated A crystallographic information about Al thin film is obtained by AFM using this technique.


2010 ◽  
Vol 16 (5) ◽  
pp. 636-642 ◽  
Author(s):  
Christopher J. Tourek ◽  
Sriram Sundararajan

AbstractThree-dimensional atom probe tomography (APT) is successfully used to analyze the near-apex regions of an atomic force microscope (AFM) tip. Atom scale material structure and chemistry from APT analysis for standard silicon AFM tips and silicon AFM tips coated with a thin film of Cu is presented. Comparison of the thin film data with that observed using transmission electron microscopy indicates that APT can be reliably used to investigate the material structure and chemistry of the apex of an AFM tip at near atomic scales.


Author(s):  
C. B. Mooney ◽  
J. T. Thornton ◽  
P. E. Russell

When imaging with an Atomic-Force Microscope (AFM), the image resolution is a complex function of the relative tip and sample geometries. When imaging or measuring high aspect ratio features, sharp and slender tips offer the possibility of probing down into extremely small topographical features. The most commonly used contact mode AFM tips are thin film cantilevers of Si3N4 with an integrated pyramidal structure used as the tip. It has been shown that microtips, which are fabricated by electron beam induced growth of carbonaceous material on the apex of the pyramid, can reduce the artifacts associated with integrated pyramidal AFM tips. A SEM micrograph of a microtip grown on the apex of an integrated pyramid is shown in Figure 1. Use of grown microtips in metrology demands an understanding of the dynamics of microtip deformation while scanning.


2008 ◽  
Vol 600-603 ◽  
pp. 867-870
Author(s):  
Gwiy Sang Chung ◽  
Ki Bong Han

This paper presents the mechanical properties of 3C-SiC thin film according to 0, 7, and 10 % carrier gas (H2) concentrations using Nano-Indentation. When carrier gas (H2) concentration was 10 %, it has been proved that the mechanical properties, Young’s Modulus and Hardness, of 3C-SiC are the best of them. In the case of 10 % carrier gas (H2) concentration, Young’s Modulus and Hardness were obtained as 367 GPa and 36 GPa, respectively. When the surface roughness according to carrier gas (H2) concentrations was investigated by AFM (atomic force microscope), when carrier gas (H2) concentration was 10 %, the roughness of 3C-SiC thin was 9.92 nm, which is also the best of them. Therefore, in order to apply poly 3C-SiC thin films to MEMS applications, carrier gas (H2) concentration’s rate should increase to obtain better mechanical properties and surface roughness.


Sign in / Sign up

Export Citation Format

Share Document