Comparative studies of mechanical properties of poly(ɛ-caprolactone) and poly(lactic acid) blends reinforced with natural fibers

2013 ◽  
Vol 20 (7) ◽  
pp. 459-467 ◽  
Author(s):  
Noel Ibrahim Akos ◽  
Mat Uzir Wahit ◽  
Rahmah Mohamed ◽  
Abdirahman Ali Yussuf
2019 ◽  
Vol 20 (4) ◽  
pp. 960 ◽  
Author(s):  
Laura Aliotta ◽  
Vito Gigante ◽  
Maria Coltelli ◽  
Patrizia Cinelli ◽  
Andrea Lazzeri

The circular economy policy and the interest for sustainable material are inducing a constant expansion of the bio-composites market. The opportunity of using natural fibers in bio-based and biodegradable polymeric matrices, derived from industrial and/or agricultural waste, represents a stimulating challenge in the replacement of traditional composites based on fossil sources. The coupling of bioplastics with natural fibers in order to lower costs and promote degradability is one of the primary objectives of research, above all in the packaging and agricultural sectors where large amounts of non-recyclable plastics are generated, inducing a serious problem for plastic disposal and potential accumulation in the environment. Among biopolymers, poly(lactic acid) (PLA) is one of the most used compostable, bio-based polymeric matrices, since it exhibits process ability and mechanical properties compatible with a wide range of applications. In this study, two types of cellulosic fibers were processed with PLA in order to obtain bio-composites with different percentages of microfibers (5%, 10%, 20%). The mechanical properties were evaluated (tensile and impact test), and analytical models were applied in order to estimate the adhesion between matrix and fibers and to predict the material’s stiffness. Understanding these properties is of particular importance in order to be able to tune and project the final characteristics of bio-composites.


2021 ◽  
pp. 5-18
Author(s):  
Sandip Kumar Mishra ◽  
Sanjeev Dahiya ◽  
Brijesh Gangil ◽  
Lalit Ranakoti ◽  
Nikita Agrawal

Being a biodegradable polymer, poly(lactic acid) (PLA) based composites receive greater preference over non-biodegradable plastics. Poly(lactic acid) has to find its place in various applications such as polymer composites, agriculture, biomedical, etc. Polymer composites based on PLA possess comparable mechanical strength, endurance, flexibility and endures future opportunities. Several combinations of natural fibers and filler-based PLA composites have been fabricated and investigated for physical and mechanical changes. Moreover, several biopolymers and compatibilizers are added to PLA to provide rigidity. The paper presents a tabulated review of the various natural fiber/filter-based PLA composites and the preparation and outcomes. In addition, enhancement made by the reinforcement of nano filler in the PLA are also discussed in brief. The significance of PLA in the biomedical application has been discussed in brief. The paper also shed lights in the social and economic aspects of PLA.


2017 ◽  
Vol 47 (8) ◽  
pp. 2074-2091 ◽  
Author(s):  
Jianxia Yang ◽  
Yitong Guo ◽  
Lan Yao ◽  
Qingqing Ni ◽  
Yiping Qiu

The proposed 3D orthogonal woven ramie/Kevlar reinforced poly (lactic acid) composite in this paper is a new type composite in which the 3D orthogonal structure has great advantages of high impact and delamination resistance due to the Z yarns and the hybridization of natural and manmade fibers provides not only partial environment friendly benefit but also efficient compensation for the relatively low mechanical properties from pure natural fibers. Eight types of the aforementioned composites were designed and fabricated. The results showed that as the volume fraction of Kevlar was increased, the tensile properties showed increasing trends, while the flexural properties were predominantly dependent on the fabric structures, especially, the weft yarns properties in the first and second layers from the upper and bottom surfaces. Furthermore, the impact strength was enhanced as the volume fraction of Kevlar increased to 5.5% and leveled off when Kevlar yarns continuously increased.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 776
Author(s):  
Sixiang Zhai ◽  
Qingying Liu ◽  
Yuelong Zhao ◽  
Hui Sun ◽  
Biao Yang ◽  
...  

With the depletion of petroleum energy, the possibility of prices of petroleum-based materials increasing, and increased environmental awareness, biodegradable materials as a kind of green alternative have attracted more and more research attention. In this context, poly (lactic acid) has shown a unique combination of properties such as nontoxicity, biodegradability, biocompatibility, and good workability. However, examples of its known drawbacks include poor tensile strength, low elongation at break, poor thermal properties, and low crystallization rate. Lignocellulosic materials such as lignin and cellulose have excellent biodegradability and mechanical properties. Compounding such biomass components with poly (lactic acid) is expected to prepare green composite materials with improved properties of poly (lactic acid). This paper is aimed at summarizing the research progress of modification of poly (lactic acid) with lignin and cellulose made in in recent years, with emphasis on effects of lignin and cellulose on mechanical properties, thermal stability and crystallinity on poly (lactic acid) composite materials. Development of poly (lactic acid) composite materials in this respect is forecasted.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 249
Author(s):  
Han-Seung Ko ◽  
Sangwoon Lee ◽  
Doyoung Lee ◽  
Jae Young Jho

To enhance the mechanical strength and bioactivity of poly(lactic acid) (PLA) to the level that can be used as a material for spinal implants, poly(glycolic acid) (PGA) fibers and hydroxyapatite (HA) were introduced as fillers to PLA composites. To improve the poor interface between HA and PLA, HA was grafted by PLA to form HA-g-PLA through coupling reactions, and mixed with PLA. The size of the HA particles in the PLA matrix was observed to be reduced from several micrometers to sub-micrometer by grafting PLA onto HA. The tensile and flexural strength of PLA/HA-g-PLA composites were increased compared with those of PLA/HA, apparently due to the better dispersion of HA and stronger interfacial adhesion between the HA and PLA matrix. We also examined the effects of the length and frequency of grafted PLA chains on the tensile strength of the composites. By the addition of unidirectionally aligned PGA fibers, the flexural strength of the composites was greatly improved to a level comparable with human compact bone. In the bioactivity tests, the growth of apatite on the surface was fastest and most uniform in the PLA/PGA fiber/HA-g-PLA composite.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2531
Author(s):  
Rodion Kopitzky

Sugar beet pulp (SBP) is a residue available in large quantities from the sugar industry, and can serve as a cost-effective bio-based and biodegradable filler for fully bio-based compounds based on bio-based polyesters. The heterogeneous cell structure of sugar beet suggests that the processing of SBP can affect the properties of the composite. An “Ultra-Rotor” type air turbulence mill was used to produce SBP particles of different sizes. These particles were processed in a twin-screw extruder with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) and fillers to granules for possible marketable formulations. Different screw designs, compatibilizers and the use of glycerol as a thermoplasticization agent for SBP were also tested. The spherical, cubic, or ellipsoidal-like shaped particles of SBP are not suitable for usage as a fiber-like reinforcement. In addition, the fineness of ground SBP affects the mechanical properties because (i) a high proportion of polar surfaces leads to poor compatibility, and (ii) due to the inner structure of the particulate matter, the strength of the composite is limited to the cohesive strength of compressed sugar-cell compartments of the SBP. The compatibilization of the polymer–matrix–particle interface can be achieved by using compatibilizers of different types. Scanning electron microscopy (SEM) fracture patterns show that the compatibilization can lead to both well-bonded particles and cohesive fracture patterns in the matrix. Nevertheless, the mechanical properties are limited by the impact and elongation behavior. Therefore, the applications of SBP-based composites must be well considered.


Sign in / Sign up

Export Citation Format

Share Document