Effects of Kevlar volume fraction and fabric structures on the mechanical properties of 3D orthogonal woven ramie/Kevlar reinforced poly (lactic acid) composites

2017 ◽  
Vol 47 (8) ◽  
pp. 2074-2091 ◽  
Author(s):  
Jianxia Yang ◽  
Yitong Guo ◽  
Lan Yao ◽  
Qingqing Ni ◽  
Yiping Qiu

The proposed 3D orthogonal woven ramie/Kevlar reinforced poly (lactic acid) composite in this paper is a new type composite in which the 3D orthogonal structure has great advantages of high impact and delamination resistance due to the Z yarns and the hybridization of natural and manmade fibers provides not only partial environment friendly benefit but also efficient compensation for the relatively low mechanical properties from pure natural fibers. Eight types of the aforementioned composites were designed and fabricated. The results showed that as the volume fraction of Kevlar was increased, the tensile properties showed increasing trends, while the flexural properties were predominantly dependent on the fabric structures, especially, the weft yarns properties in the first and second layers from the upper and bottom surfaces. Furthermore, the impact strength was enhanced as the volume fraction of Kevlar increased to 5.5% and leveled off when Kevlar yarns continuously increased.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2531
Author(s):  
Rodion Kopitzky

Sugar beet pulp (SBP) is a residue available in large quantities from the sugar industry, and can serve as a cost-effective bio-based and biodegradable filler for fully bio-based compounds based on bio-based polyesters. The heterogeneous cell structure of sugar beet suggests that the processing of SBP can affect the properties of the composite. An “Ultra-Rotor” type air turbulence mill was used to produce SBP particles of different sizes. These particles were processed in a twin-screw extruder with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) and fillers to granules for possible marketable formulations. Different screw designs, compatibilizers and the use of glycerol as a thermoplasticization agent for SBP were also tested. The spherical, cubic, or ellipsoidal-like shaped particles of SBP are not suitable for usage as a fiber-like reinforcement. In addition, the fineness of ground SBP affects the mechanical properties because (i) a high proportion of polar surfaces leads to poor compatibility, and (ii) due to the inner structure of the particulate matter, the strength of the composite is limited to the cohesive strength of compressed sugar-cell compartments of the SBP. The compatibilization of the polymer–matrix–particle interface can be achieved by using compatibilizers of different types. Scanning electron microscopy (SEM) fracture patterns show that the compatibilization can lead to both well-bonded particles and cohesive fracture patterns in the matrix. Nevertheless, the mechanical properties are limited by the impact and elongation behavior. Therefore, the applications of SBP-based composites must be well considered.


Author(s):  
Jamileh Shojaeiarani ◽  
Dilpreet Bajwa

Biopolymers are emerging materials with numerous capabilities of minimizing the environmental hazards caused by synthetic materials. The competitive mechanical properties of bio-based poly(lactic acid) (PLA) reinforced with cellulose nanocrystals (CNCs) have attracted a huge interest in improving the mechanical properties of the corresponding nanocomposites. To obtain optimal properties of PLA-CNC nanocomposites, the compatibility between PLA and CNCs needs to be improved through uniform dispersion of CNCs into PLA. The application of chemical surface functionalization technique is an essential step to improve the interaction between hydrophobic PLA and hydrophilic CNCs. In this study, a combination of a time-efficient esterification technique and masterbatch approach was used to improve the CNCs dispersibility in PLA. Nanocomposites reinforced by 1, 3, and 5 wt% functionalized CNCs were prepared using twin screw extrusion followed by injection molding process. The mechanical and dynamic mechanical properties of pure PLA and nanocomposites were studied through tensile, impact and dynamic mechanical analysis. The impact fractured surfaces were characterized using scanning electron microscopy. The mechanical test results exhibited that tensile strength and modulus of elasticity of nanocomposites improved by 70% and 11% upon addition of functionalized CNCs into pure PLA. The elongation at break and impact strength of nanocomposites exhibited 43% and 35% increase as compared to pure PLA. The rough and irregular fracture surface in nanocomposites confirmed the higher ductility in PLA nanocomposites as compared to pure PLA. The incorporation of functionalized CNCs into PLA resulted in an increase in storage modulus and a decrease in tan δ intensity which was more profound in nanocomposites reinforced with 3 wt% functionalized CNCs.


2019 ◽  
pp. 089270571986461
Author(s):  
Kubra Coskun ◽  
Aysenur Mutlu ◽  
Mehmet Dogan ◽  
Ebru Bozacı

The effects of enzymatic treatments on the properties of coir fiber-reinforced poly(lactic acid) (PLA) were not found in the literature. Accordingly, the effects of various enzymatic treatments on the mechanical performance of the coir fiber-reinforced PLA composites were investigated in the current study. Four different enzymes, namely lipase, lactase, pectinase, and cellulase, were used. The mechanical properties of the composites were determined by the tensile, flexural, impact tests, and dynamic mechanical analysis. According to the test results, the use of enzyme treated coir fibers affected the mechanical properties except for the flexural properties with different extents depending upon their type. The tensile strength increased with the treatments of lipase and lactase, while the treatments with pectinase and cellulase had no remarkable effect. The impact strength was improved with enzymatic treatments except for pectinase. All enzymatic treatments improved the elastic modulus below the glass transition temperature. In brief, enzymatic treatments improved the interfacial adhesion between coir fiber and PLA via the waxes and fatty acids removal and/or the increment in surface roughness.


2018 ◽  
Vol 773 ◽  
pp. 51-55
Author(s):  
Jasmine Pongkasem ◽  
Saowaroj Chuayjuljit ◽  
Phasawat Chaiwutthinan ◽  
Amnouy Larpkasemsuk ◽  
Anyaporn Boonmahitthisud

In this study, poly(lactic acid) (PLA) was melt mixed with three weight percentages (10–30wt%) of ethylene vinyl acetate copolymer (EVA) in an internal mixer, followed by a compression molding. According to a better combination of mechanical properties, the 90/10 (w/w) PLA/EVA was selected for preparing hybrid nanocomposites with three loadings (1, 3 and 5 parts per hundred of resin , phr) of poly(methyl methacrylate)-encapsulated nanosilica (PMMA-nSiO2). The nanolatex of PMMA-nSiO2 was synthesized via in situ differential microemulsion polymerization. The obtained PMMA-nSiO2 showed a core-shell morphology with nSiO2 as a core and PMMA as a shell, having an average diameter of 43.4nm. The influences of the EVA and PMMA-nSiO2 on the impact strength and the tensile properties of the PLA/EVA nanocomposites were studied and compared. It is found that the impact strength and the tensile properties of the 90/10 (w/w) PLA/EVA were improved with the appropriate amounts of the EVA and PMMA-nSiO2.


2012 ◽  
Vol 200 ◽  
pp. 312-315
Author(s):  
Ping Zhang ◽  
Bing Tao Wang ◽  
De Gao ◽  
Li Hua Wen

The paper describes the production and the mechanical characteristics of composites made completely from renewable raw materials, the corn straw fiber and the biodegradable plastic, poly(lactic acid). The effect of straw fiber content on the mechanical properties of the composites was studied and the optimum mass fraction was 15%. To enhance the mechanical properties of the composites, two different methods were tested. Maleic anhydride as the compatilizer was introduced into the composites but the changes of the mechanical properties were small. While the other method, pre-treatment for straw fiber before blending, the mechanical properties increased obviously. The tensile strength and the impact strength were 35.6 MPa and 1.67 kJ/m2, respectively.


2018 ◽  
Vol 52 (19) ◽  
pp. 2641-2650 ◽  
Author(s):  
U Saeed ◽  
MA Nawaz ◽  
HA Al-Turaif

The advanced development of biocomposites made of biodegradable polymers and natural fibers has initiated great interest because the resultant polymer will degrade absolutely and will not emit toxic substances. Among the biodegradable polymers, the poly(butylene succinate) and poly(lactic acid) have diverse commercial applications and the natural fiber such as wood flour is renewable and cheaper alternative to synthetic fiber. The properties of the composite made of poly(butylene succinate)/poly(lactic acid) blend and wood flour are not compatible due to the poor wettability and interfacial adhesion. Therefore, in the study presented, the Fusabond MB 100 D has been used to improve the interfacial bonding between poly(butylene succinate)/poly(lactic acid) blend and the dispersed wood flour. The results reveal that the addition of FB not only increases the tensile strength but also improves the impact strength of poly(butylene succinate)/poly(lactic acid)wood flour composite under high dynamic loading. Moreover, when Fusabond MB 100 D is added as a coupling agent to the poly(butylene succinate)/poly(lactic acid)wood flour composite results of X-ray photo spectroscopy, fracture surface morphology and dynamical mechanical property indicate the interaction between the poly(butylene succinate)/poly(lactic acid) blend with the wood flour.


2018 ◽  
Vol 916 ◽  
pp. 19-23 ◽  
Author(s):  
Sirirat Wacharawichanant ◽  
Nisarat Wimonsupakit ◽  
Sasithorn Kuhaudomlap

The objective of this study is to fabricate the polyoxymethylene (POM)/microcrystalline cellulose (MCC) and poly(lactic acid) (PLA)/MCC composites, and to compare the effect of MCC on the morphology and mechanical properties of POM and PLA. The polymer composites were prepared by melt mixing in an internal mixer and molded by compression molding. The MCC concentrations were 1, 3, 5, 7, 10, 15 and 10% by weight. From scanning electron microscopy study observes the fracture surface of POM and PLA composites is much rough and the roughness increases with increasing MCC content. This observation indicates MCC induces the ductile fracture characteristic of POM and PLA. The addition of MCC can improve the impact strength of PLA composite and improve Young’s modulus of both POM and PLA composites. While the tensile strength and strain at break decrease after adding MCC. In summary, MCC can enhance the morphology and mechanical properties of PLA composites is better than POM composites.


2019 ◽  
Vol 20 (4) ◽  
pp. 960 ◽  
Author(s):  
Laura Aliotta ◽  
Vito Gigante ◽  
Maria Coltelli ◽  
Patrizia Cinelli ◽  
Andrea Lazzeri

The circular economy policy and the interest for sustainable material are inducing a constant expansion of the bio-composites market. The opportunity of using natural fibers in bio-based and biodegradable polymeric matrices, derived from industrial and/or agricultural waste, represents a stimulating challenge in the replacement of traditional composites based on fossil sources. The coupling of bioplastics with natural fibers in order to lower costs and promote degradability is one of the primary objectives of research, above all in the packaging and agricultural sectors where large amounts of non-recyclable plastics are generated, inducing a serious problem for plastic disposal and potential accumulation in the environment. Among biopolymers, poly(lactic acid) (PLA) is one of the most used compostable, bio-based polymeric matrices, since it exhibits process ability and mechanical properties compatible with a wide range of applications. In this study, two types of cellulosic fibers were processed with PLA in order to obtain bio-composites with different percentages of microfibers (5%, 10%, 20%). The mechanical properties were evaluated (tensile and impact test), and analytical models were applied in order to estimate the adhesion between matrix and fibers and to predict the material’s stiffness. Understanding these properties is of particular importance in order to be able to tune and project the final characteristics of bio-composites.


2013 ◽  
Vol 20 (7) ◽  
pp. 459-467 ◽  
Author(s):  
Noel Ibrahim Akos ◽  
Mat Uzir Wahit ◽  
Rahmah Mohamed ◽  
Abdirahman Ali Yussuf

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2285
Author(s):  
Nicolas Delpouve ◽  
Hajar Faraj ◽  
Clément Demarest ◽  
Eric Dontzoff ◽  
Marie-Rose Garda ◽  
...  

The impact of the immersion in water on the morphology and the thermomechanical properties of a biocomposite made of a matrix of poly (lactic acid) (PLA) modified with an ethylene acrylate toughening agent, and reinforced with miscanthus fibers, has been investigated. Whereas no evidence of hydrolytic degradation has been found, the mechanical properties of the biocomposite have been weakened by the immersion. Scanning electron microscopy (SEM) pictures reveal that the water-induced degradation is mainly driven by the cracking of the fiber/matrix interface, suggesting that the cohesiveness is a preponderant factor to consider for the control of the biocomposite decomposition in aqueous environments. Interestingly, it is observed that the loss of mechanical properties is aggravated when the stereoregularity of PLA is the highest, and when increasing the degree of crystallinity. To investigate the influence of the annealing on the matrix behavior, crystallization at various temperatures has been performed on tensile bars of PLA made by additive manufacturing with an incomplete filling to enhance the contact area between water and polymer. While a clear fragilization occurs in the material crystallized at high temperature, PLA crystallized at low temperature better maintains its properties and even shows high elongation at break likely due to the low size of the spherulites in these annealing conditions. These results show that the tailoring of the mesoscale organization in biopolymers and biocomposites can help control their property evolution and possibly their degradation in water.


Sign in / Sign up

Export Citation Format

Share Document