scholarly journals Experimental design for the highly accurate prediction of material properties using descriptors obtained by measurement

Author(s):  
Ryo Tamura ◽  
Yuki Takei ◽  
Shinichiro Imai ◽  
Maki Nakahara ◽  
Satoshi Shibata ◽  
...  
1995 ◽  
Vol 29 (16) ◽  
pp. 2134-2159 ◽  
Author(s):  
Clinton Chapman ◽  
John Whitcomb

This paper examines the effect of assumed tow architecture on the predicted moduli and stresses in plain weave textile composites. In particular, the effect of how a constant cross-section is assumed to sweep-out the volume of a tow is explored. Two architectures are examined which have a sinusoidal tow path and a lenticular cross-section. Three-dimensional finite elements are employed to model a T300/Epoxy plain weave composite with symmetrically stacked mats. Macroscopically homogeneous in-plane extension and shear and transverse shear loadings were considered. Symmetries are exploited which permitted modeling of only 1/32nd of the unit cell. Accounting for the variation of material properties throughout each element is determined to be necessary for accurate prediction of stresses in the composite. For low waviness, the two tow architectures examined are very similar. At high waviness, the stress predictions are much more sensitive to the assumed tow geometry.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Marc Petre ◽  
Ahmet Erdemir ◽  
Vassilis P. Panoskaltsis ◽  
Thomas A. Spirka ◽  
Peter R. Cavanagh

Accurate prediction of plantar shear stress and internal stress in the soft tissue layers of the foot using finite element models would provide valuable insight into the mechanical etiology of neuropathic foot ulcers. Accurate prediction of the internal stress distribution using finite element models requires that realistic descriptions of the material properties of the soft tissues are incorporated into the model. Our investigation focused on the creation of a novel three-dimensional (3D) finite element model of the forefoot with multiple soft tissue layers (skin, fat pad, and muscle) and the development of an inverse finite element procedure that would allow for the optimization of the nonlinear elastic coefficients used to define the material properties of the skin muscle and fat pad tissue layers of the forefoot based on a Ogden hyperelastic constitutive model. Optimization was achieved by comparing deformations predicted by finite element models to those measured during an experiment in which magnetic resonance imaging (MRI) images were acquired while the plantar surface forefoot was compressed. The optimization procedure was performed for both a model incorporating all three soft tissue layers and one in which all soft tissue layers were modeled as a single layer. The results indicated that the inclusion of multiple tissue layers affected the deformation and stresses predicted by the model. Sensitivity analysis performed on the optimized coefficients indicated that small changes in the coefficient values (±10%) can have rather large impacts on the predicted nominal strain (differences up to 14%) in a given tissue layer.


Author(s):  
Stephen Baker ◽  
Justin Sigley ◽  
Christine Carlisle ◽  
Joel Stitzel ◽  
Joel Berry ◽  
...  

Understanding the material properties of the nanofibers comprising electrospun scaffolds for tissue engineering will elucidate the mechanotransduction of cells seeded onto and attached those scaffolds. The overall mechanical properties of any structure built from fibers depend on 1) the architecture, 2) the properties of the constituent single fibers, and 3) the junctions between fibers. All three must be known to design a structure with predictable mechanical properties. We hypothesize that a basic understanding of the nanolevel mechanical properties of individual electrospun fibers will enable accurate prediction of the overall cellular response and bulk mechanical behavior of electrospun tissue scaffolds.


2018 ◽  
Vol 41 ◽  
Author(s):  
Wei Ji Ma

AbstractGiven the many types of suboptimality in perception, I ask how one should test for multiple forms of suboptimality at the same time – or, more generally, how one should compare process models that can differ in any or all of the multiple components. In analogy to factorial experimental design, I advocate for factorial model comparison.


2019 ◽  
Vol 42 ◽  
Author(s):  
J. Alfredo Blakeley-Ruiz ◽  
Carlee S. McClintock ◽  
Ralph Lydic ◽  
Helen A. Baghdoyan ◽  
James J. Choo ◽  
...  

Abstract The Hooks et al. review of microbiota-gut-brain (MGB) literature provides a constructive criticism of the general approaches encompassing MGB research. This commentary extends their review by: (a) highlighting capabilities of advanced systems-biology “-omics” techniques for microbiome research and (b) recommending that combining these high-resolution techniques with intervention-based experimental design may be the path forward for future MGB research.


1978 ◽  
Vol 48 ◽  
pp. 7-29
Author(s):  
T. E. Lutz

This review paper deals with the use of statistical methods to evaluate systematic and random errors associated with trigonometric parallaxes. First, systematic errors which arise when using trigonometric parallaxes to calibrate luminosity systems are discussed. Next, determination of the external errors of parallax measurement are reviewed. Observatory corrections are discussed. Schilt’s point, that as the causes of these systematic differences between observatories are not known the computed corrections can not be applied appropriately, is emphasized. However, modern parallax work is sufficiently accurate that it is necessary to determine observatory corrections if full use is to be made of the potential precision of the data. To this end, it is suggested that a prior experimental design is required. Past experience has shown that accidental overlap of observing programs will not suffice to determine observatory corrections which are meaningful.


Author(s):  
C.L. Briant

Grain boundary segregation is the process by which solute elements in a material diffuse to the grain boundaries, become trapped there, and increase their local concentration at the boundary over that in the bulk. As a result of this process this local concentration of the segregant at the grain boundary can be many orders of magnitude greater than the bulk concentration of the segregant. The importance of this problem lies in the fact that grain boundary segregation can affect many material properties such as fracture, corrosion, and grain growth.One of the best ways to study grain boundary segregation is with Auger electron spectroscopy. This spectroscopy is an extremely surface sensitive technique. When it is used to study grain boundary segregation the sample must first be fractured intergranularly in the high vacuum spectrometer. This fracture surface is then the one that is analyzed. The development of scanning Auger spectrometers have allowed researchers to first image the fracture surface that is created and then to perform analyses on individual grain boundaries.


Author(s):  
Brian Ralph ◽  
Barlow Claire ◽  
Nicola Ecob

This brief review seeks to summarize some of the main property changes which may be induced by altering the grain structure of materials. Where appropriate an interpretation is given of these changes in terms of current theories of grain boundary structure, and some examples from current studies are presented at the end of this paper.


Sign in / Sign up

Export Citation Format

Share Document