Hydroxypropyl Methylcellulose Mixtures: Effects and Kinetics of Release of an Insoluble Drug

1999 ◽  
Vol 25 (5) ◽  
pp. 667-669 ◽  
Author(s):  
Reynir Eyjolfsson
Author(s):  
Tetiana Popova ◽  
Halyna Kukhtenko ◽  
Nataliia Bevz ◽  
Oleksandr Kukhtenko

Every year there is an increase in the number of cases of hypersensitivity to bites from various insects. A local allergic reaction to bites occurs within a few minutes and is accompanied by acute pain at the site of the bite, severe itching, hyperemia, the appearance of papules, tissue edema, and sometimes a small-point rash around. Considering the small number of drugs for local therapy of allergic manifestations and the unidirectional nature of their action, it is urgent to develop a drug containing the antihistamine dimethindene maleate and dexpanthenol, which plays the role of an anti-inflammatory, reparative and dermatoprotective substance. The aim. The aim of the study is to substantiate the delivery system of dimethindene maleate and dexpanthenol based on biopharmaceutical and rheometric research methods. Materials and methods. To determine the component composition of the active ingredient delivery system, the type of dimetindene maleate administration was substantiated by studying its solubility. As a delivery system for active pharmaceutical ingredients, hydrogels were considered, which were made using high-molecular compounds of various origins: a natural substance – xanthan gum, a semi-synthetic substance – gyroxypropyl methylcellulose, and a synthetic substance – carbomer. The rate of release of dimethindene maleate from hydrogels was estimated by studying the kinetics of release through a semipermeable membrane. The assessment of the viscoelastic properties of hydrogels was carried out by performing an oscillatory rheometry test, which makes it possible to quantitatively determine the viscous and elastic components, as well as to characterize the bioadhesive properties. Results. Based on the results of studying the solubility of dimethindene maleate in hydrophilic non-aqueous solvents, it was determined that propylene glycol is optimal for ensuring the introduction of a substance into hydrogel bases as a solution. As a result of studying the kinetics of the release of dimethindene maleate from hydrogels, it was found that the use of carbomer as a delivery system provides the release of 28.33 % of dimethindene maleate, xanthan gum – 25 %, hydroxypropyl methylcellulose – 7.33 %. When studying the viscoelastic properties by determining the values ​​of the storage modulus G', the loss modulus G" and the damping (attenuation) factor tg δ, it was found that the carbomer-based hydrogel is a viscoelastic solid, the xanthan gum and hydroxypropyl methylcellulose-based hydrogels are a viscoelastic liquid. Bioadhesion on the surface of the skin during use has the advantage of carbomer hydrogel. Conclusions. Based on the combination of biopharmaceutical and rheometric methods for substantiating the composition of the delivery system for dimetindene maleate and dexpanthenol, it is rational to use carbomer for further pharmacological and microbiological studies


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Hsinyun Hsu ◽  
Lynne S. Taylor ◽  
Michael T. Harris

Introducing foreign substrates or additives is the common way to regulate polymorphism or kinetics of crystallization. Most present studies consider the substrate factor and additive factor separately. Here, the interplay between the additive, crystallizing molecules, and the substrate was investigated. Acetaminophen (APAP) was used as the model compound. 5 wt.% dioctyl sodium sulfosuccinate (AOT), poly(acrylic) acid (PAA), and hydroxypropyl methylcellulose (HPMC) were employed as additives. The interfacial crystal growth rate of APAP in the presence of additives was studied between slides coated with chitosan (CS) film. The crystallization kinetics of the additive/APAP mixture on CS substrate was also investigated. The additive/APAP was characterized by differential scanning calorimetry (DSC), and the interfacial molecular interaction was studied by Fourier transform infrared spectroscopy (FTIR). The results indicate that the additive-substrate interaction can change the interfacial growth behavior observed in the additive-APAP binary system. Nevertheless, crystallizing without confinement, the additive-APAP interaction is more effective at controlling the crystallization of APAP, and the substrates did not have much effect.


1970 ◽  
Vol 2 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Muhammad Shahidul Islam ◽  
Tasnuva Haque ◽  
Rumana Jahangir ◽  
Kanij Fatema ◽  
Mynol Islam Vhuiyan ◽  
...  

In the present study Ciprofloxacin HCl sustained release matrix tablet was prepared by utilizing different grades of hydroxypropyl methylcellulose (HPMC) polymers such as Methocel K4M CR, Methocel K4M Premium & Methocel K15M CR by direct compression method. Different amount of Methocel K15M CR was used to develop matrix builder in the three proposed formulations (F1-F3) for the study of release rate retardant effect at 5%, 6%, and 7% of total weight of tablet matrix respectively. The dissolution study of Methocel K15M CR based tablet matrices of those proposed formulations were carried out in the simulated gastric medium (pH 1.3) for 8 hours using USP dissolution apparatus II. Similarly Methocel K4M premium was used to develop matrix builder in another three proposed formulations (F4-F6). It was found that formulations F-4 (15%), F-5 (17%) and F-6 (18.3%) met the desired release rate of Ciprofloxacin HCl for 8hrs period. The release kinetics of formulation F-4, F-5 and F-6 followed Higuchi kinetic order. Again Methocel K4M premium was used for another three proposed formulations (F7-F9). It was found that formulations F-7 (6.7%), F-8 (12.3%) and F-9 (15.6%) met the desired release rate of Ciprofloxacin HCl for 8hrs period. The release kinetics of formulation F-7, F-8 and F-9 followed Higuchi kinetic order. Among these three polymers, Methocel K4M Premium showed better release retardant effect than Methocel K4M CR and Methocel K15M CR. Key Words: Ciprofloxacin HCl; Direct compression; Controlled release; Methocel K15M CR; Methocel K4M CR; Methocel K4M premium.DOI: 10.3329/sjps.v2i1.5814Stamford Journal of Pharmaceutical Sciences Vol.2(1) 2009: 37-43


Author(s):  
LINA WINARTI ◽  
AFALAH ZULFA LAILY ◽  
LUSIA OKTORA RUMA KUMALA SARI ◽  
EKA DEDDY IRAWAN ◽  
DWI NURRAHMANTO ◽  
...  

Objective: This research aims to determine the amount of hydroxypropyl methylcellulose (HPMC) and chitosan, which can produce the optimum buccal film formula and to determine the release kinetics of diltiazem hydrochloride in vitro. Methods: The film was prepared by the solvent casting method. The formula's optimization was carried out using factorial design, which was processed using Design Expert 11.0.0 software, while the release kinetics was analyzed using the DDSolver program. Results: The optimization results show that HPMC and chitosan (30 mg: 10 mg) is the amount of polymer that can produce the optimum formula. The buccal film formula has a swelling index of 2.92, a mucoadhesive strength of 64.40 gF, and a mucoadhesive residence time of 464 min. In vitro release study showed 97.64% release of Diltiazem hydrochloride after 480 min. The release kinetic’s of diltiazem hydrochloride follow the Korsmeyer Peppas model. Conclusion: Thus, it can be concluded that the prepared formulation of the buccal mucoadhesive film can be a delivery system for diltiazem hydrochloride.


Author(s):  
J. F. DeNatale ◽  
D. G. Howitt

The electron irradiation of silicate glasses containing metal cations produces various types of phase separation and decomposition which includes oxygen bubble formation at intermediate temperatures figure I. The kinetics of bubble formation are too rapid to be accounted for by oxygen diffusion but the behavior is consistent with a cation diffusion mechanism if the amount of oxygen in the bubble is not significantly different from that in the same volume of silicate glass. The formation of oxygen bubbles is often accompanied by precipitation of crystalline phases and/or amorphous phase decomposition in the regions between the bubbles and the detection of differences in oxygen concentration between the bubble and matrix by electron energy loss spectroscopy cannot be discerned (figure 2) even when the bubble occupies the majority of the foil depth.The oxygen bubbles are stable, even in the thin foils, months after irradiation and if van der Waals behavior of the interior gas is assumed an oxygen pressure of about 4000 atmospheres must be sustained for a 100 bubble if the surface tension with the glass matrix is to balance against it at intermediate temperatures.


Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.


Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.


Sign in / Sign up

Export Citation Format

Share Document