scholarly journals Proteins regulating actin assembly in oogenesis and early embryogenesis of Xenopus laevis: gelsolin is the major cytoplasmic actin-binding protein.

1988 ◽  
Vol 107 (4) ◽  
pp. 1489-1498 ◽  
Author(s):  
T Ankenbauer ◽  
J A Kleinschmidt ◽  
J Vandekerckhove ◽  
W W Franke

Oocytes, notably those of amphibia, accumulate large pools of nonfilamentous ("soluble") actin, both in the cytoplasm and in the nucleoplasm, which coexist with extensive actin filament arrays in the cytoplasmic cortex. Because the regulation of oogenically accumulated actin is important in various processes of oogenesis, egg formation, fertilization and early embryogenesis, we have purified and characterized the major actin-binding proteins present in oocytes of Xenopus laevis. Here we report that the major actin-binding component in the ooplasm, but not in the nucleus, is a polypeptide of Mr approximately 93,000 on SDS-PAGE that reduces actin polymerization in vitro in a Ca2+-dependent manner but promotes nucleation events, and also reduces the viscosity of actin polymers, indicative of severing activity. We have raised antibodies against the purified oocyte protein and show that it is different from villin, is also prominent in unfertilized eggs and early embryos and is very similar to a corresponding protein present in various tissues and in cultured cells, and appears to be spread over the cytoplasm. Using these antibodies we have isolated a cDNA clone from a lambda gt11 expression library of ovarian poly(A)+-RNA. Determination of the amino acid sequence derived from the nucleotide sequence, together with the directly determined sequence of the amino terminus of the native protein, has shown that this clone encodes the carboxy-terminal half of gelsolin. We conclude that gelsolin is the major actin-modulating protein in oogenesis and early embryogenesis of amphibia, and probably also of other species, that probably also plays an important role in the various Ca2+-dependent gelation and contractility processes characteristic of these development stages.

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 106
Author(s):  
Yeongji Yu ◽  
Hyejin Kim ◽  
SeokGyeong Choi ◽  
JinSuh Yu ◽  
Joo Yeon Lee ◽  
...  

The elimination of the cancer stem cell (CSC) population may be required to achieve better outcomes of cancer therapy. We evaluated stearoyl-CoA desaturase 1 (SCD1) as a novel target for CSC-selective elimination in colon cancer. CSCs expressed more SCD1 than bulk cultured cells (BCCs), and blocking SCD1 expression or function revealed an essential role for SCD1 in the survival of CSCs, but not BCCs. The CSC potential selectively decreased after treatment with the SCD1 inhibitor in vitro and in vivo. The CSC-selective suppression was mediated through the induction of apoptosis. The mechanism leading to selective CSC death was investigated by performing a quantitative RT-PCR analysis of 14 CSC-specific signaling and marker genes after 24 and 48 h of treatment with two concentrations of an inhibitor. The decrease in the expression of Notch1 and AXIN2 preceded changes in the expression of all other genes, at 24 h of treatment in a dose-dependent manner, followed by the downregulation of most Wnt- and NOTCH-signaling genes. Collectively, we showed that not only Wnt but also NOTCH signaling is a primary target of suppression by SCD1 inhibition in CSCs, suggesting the possibility of targeting SCD1 against colon cancer in clinical settings.


1998 ◽  
Vol 111 (5) ◽  
pp. 557-572 ◽  
Author(s):  
C. Roghi ◽  
R. Giet ◽  
R. Uzbekov ◽  
N. Morin ◽  
I. Chartrain ◽  
...  

By differential screening of a Xenopus laevis egg cDNA library, we have isolated a 2,111 bp cDNA which corresponds to a maternal mRNA specifically deadenylated after fertilisation. This cDNA, called Eg2, encodes a 407 amino acid protein kinase. The pEg2 sequence shows significant identity with members of a new protein kinase sub-family which includes Aurora from Drosophila and Ipl1 (increase in ploidy-1) from budding yeast, enzymes involved in centrosome migration and chromosome segregation, respectively. A single 46 kDa polypeptide, which corresponds to the deduced molecular mass of pEg2, is immunodetected in Xenopus oocyte and egg extracts, as well as in lysates of Xenopus XL2 cultured cells. In XL2 cells, pEg2 is immunodetected only in S, G2 and M phases of the cell cycle, where it always localises to the centrosomal region of the cell. In addition, pEg2 ‘invades’ the microtubules at the poles of the mitotic spindle in metaphase and anaphase. Immunoelectron microscopy experiments show that pEg2 is located precisely around the pericentriolar material in prophase and on the spindle microtubules in anaphase. We also demonstrate that pEg2 binds directly to taxol stabilised microtubules in vitro. In addition, we show that the presence of microtubules during mitosis is not necessary for an association between pEg2 and the centrosome. Finally we show that a catalytically inactive pEg2 kinase stops the assembly of bipolar mitotic spindles in Xenopus egg extracts.


2020 ◽  
Author(s):  
Xiaoyu Sun ◽  
Donovan Y. Z. Phua ◽  
Lucas Axiotakis ◽  
Mark A. Smith ◽  
Elizabeth Blankman ◽  
...  

SummaryMechanical signals transmitted through the cytoplasmic actin cytoskeleton must be relayed to the nucleus to control gene expression. LIM domains are protein-protein interaction modules found in cytoskeletal proteins and transcriptional regulators; however, it is unclear if there is a direct link between these two functions. Here we identify three LIM protein families (zyxin, paxillin, and FHL) whose members preferentially localize to the actin cytoskeleton in mechanically-stimulated cells through their tandem LIM domains. A minimal actin-myosin reconstitution system reveals that representatives of all three families directly bind F-actin only in the presence of mechanical force. Point mutations at a site conserved in each LIM domain of these proteins selectively disrupt tensed F-actin binding in vitro and cytoskeletal localization in cells, demonstrating a common, avidity-based mechanism. Finally, we find that binding to tensed F-actin in the cytoplasm excludes the cancer-associated transcriptional co-activator FHL2 from the nucleus in stiff microenvironments. This establishes direct force-activated F-actin binding by FHL2 as a mechanosensing mechanism. Our studies suggest that force-dependent sequestration of LIM proteins on the actin cytoskeleton could be a general mechanism for controlling nuclear localization to effect mechanical signaling.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Joseph B Mascarenhas ◽  
Ghassan Mouneimne ◽  
Carol C Gregorio ◽  
Mary E Brown ◽  
Ting Wang ◽  
...  

Ena/VASP like protein, or EVL, is an actin-binding protein that regulates cancer cell lamellipodia protrusive activity and cell motility via an actomyosin contractility-dependent mechanism. The function of EVL in human lung endothelial cell (EC) barrier regulation, especially by the endogenous bioactive lipid mediator sphingosine-1-phosphate (S1P), is largely unknown. In this current study, we demonstrated that EVL is an active component in S1P-mediated EC barrier enhancement and lamellipodia formation. Compared to other focal adhesion (FA) proteins such as paxillin, EVL protein expression is very low in human pulmonary endothelial cells (ECs). S1P (1 μM) challenge stimulates translocation of cytosolic EVL to FAs in ECs, which was attenuated by EVL knockdown (KD) by its selective siRNA. S1P also promoted significant EVL translocation to lamellipodia, further confirmed by tracking translocation of EVL-GFP fusion protein upon S1P stimulation in a time-dependent manner. In addition, S1P-mediated cortical actin filament formation is attenuated by EVL KD, further confirming the function of EVL in S1P-induced lamellipodia formation/cortical actin polymerization. S1P stimulates EVL phosphorylation by tyrosine kinase c-Abl which is attenuated by the c-Abl inhibitor, imatinib. Finally, EVL KD attenuated S1P-mediated EC barrier enhancement and paracellular gap resealing reflected by reduced transendothelial electrical resistance (TER) measurements. These findings confirm a novel role for EVL in human lung vascular barrier enhancement and cytoskeleton rearrangement by S1P.


2010 ◽  
Vol 5 (5) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Michel David dos Santos ◽  
Guanjie Chen ◽  
Maria Camila Almeida ◽  
Denis Melo Soares ◽  
Glória Emília Petto de Souza ◽  
...  

In this study we aimed at evaluating the effect of the major polar constituents of the medicinal plant Lychnophora ericoides on the production of inflammatory mediators produced by LPS-stimulated U-937 cells. The 6,8-di- C-β-glucosylapigenin (vicenin-2) presented no effect on tumor necrosis factor (TNF)-α production, but inhibited, in a dose-dependent manner, the production of prostaglandin (PG) E2 without altering the expression of cyclooxygenase (COX) -2 protein. 3,5-Dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid, at lower concentrations, had small but significant effects on reducing PGE2 levels; at higher doses these compounds stimulated PGE2 and also TNF-α production by the cells. All the caffeoylquinic acid derivatives, in a dose-dependent fashion, were able to inhibit monocyte chemoattractant protein-3 synthesis/release, with 4,5-DCQ being the most potent at the highest tested concentration. These results add important information on the effects of plant natural polyphenols, namely vicenin-2 and caffeoylquinic acid derivatives, on the production of inflammatory mediators by cultured cells.


2008 ◽  
Vol 28 (4) ◽  
pp. 195-203 ◽  
Author(s):  
Mechthild M. Schroeter ◽  
Brent Beall ◽  
Hans W. Heid ◽  
Joseph M. Chalovich

An analysis of the primary structure of the actin-binding protein fesselin revealed it to be the avian homologue of mammalian synaptopodin 2 [Schroeter, Beall, Heid, and Chalovich (2008) Biochem. Biophys. Res. Commun. 371, 582–586]. We isolated two synaptopodin 2 isoforms from rabbit stomach that corresponded to known types of human synaptopodin 2. The purification scheme used was that developed for avian fesselin. These synaptopodin 2 forms shared several key functions with fesselin. Both avian fesselin and mammalian synaptopodin 2 bound to Ca2+–calmodulin, α-actinin and smooth-muscle myosin. In addition, both proteins stimulated the polymerization of actin in a Ca2+–calmodulin-dependent manner. Synaptopodin 2 has never before been shown to polymerize actin in the absence of α-actinin, to polymerize actin in a Ca2+–calmodulin-dependent manner, or to bind to Ca2+–calmodulin or myosin. These properties are consistent with the proposed function of synaptopodin 2 in organizing the cytoskeleton.


1987 ◽  
Vol 244 (2) ◽  
pp. 417-425 ◽  
Author(s):  
P K Ngai ◽  
M P Walsh

Caldesmon is a major calmodulin- and actin-binding protein of smooth muscle which interacts with calmodulin in a Ca2+-dependent manner or with actin in a Ca2+-independent manner. Isolated caldesmon is capable of inhibiting the actin-activated Mg2+-ATPase of smooth-muscle myosin, suggesting a possible physiological role for caldesmon in regulating the contractile state of smooth-muscle. Caldesmon can be phosphorylated in vitro by a co-purifying Ca2+/calmodulin-dependent protein kinase and dephosphorylated by a protein phosphatase, both of which are present in smooth muscle. We investigated further the phosphorylation of caldesmon and the effects which phosphorylation has on the functional properties of the protein. The kinetics of caldesmon phosphorylation were similar whether the caldesmon substrate was free or bound to actin, actin/tropomyosin or thin filaments. Caldesmon containing endogenous kinase activity was rapidly phosphorylated (to approx. 1 mol of Pi/mol of caldesmon in 5 min) when reconstituted with actin, myosin, tropomyosin, calmodulin and myosin light-chain kinase in the presence of Ca2+ and MgATP2-. Under conditions in which unphosphorylated caldesmon showed substantial inhibition of the actin-activated myosin Mg2+-ATPase, no inhibition was observed with phosphorylated caldesmon. This was the case whether caldesmon was phosphorylated before addition to the actomyosin Mg2+-ATPase system, or phosphorylation was allowed to take place during the ATPase reaction. Binding studies revealed maximal binding of 1 mol of unphosphorylated caldesmon/9.5 mol of actin and 1 mol of phosphorylated caldesmon/11.7 mol of actin. All the bound phosphorylated caldesmon could be released by Ca2+/calmodulin, with half-maximal release at 0.11 microM-Ca2+, whereas only 62% of the bound unphosphorylated caldesmon could be removed, with half-maximal release at 0.16 microM-Ca2+. However, under conditions in which inhibition of actomyosin Mg2+-ATPase activity by non-phosphorylated but not by phosphorylated caldesmon was observed, both forms of caldesmon would remain bound to the thin filament. These observations suggest a possible mechanism whereby caldesmon phosphorylation may prevent its inhibitory action on the actomyosin Mg2+-ATPase.


2003 ◽  
Vol 284 (4) ◽  
pp. F653-F662 ◽  
Author(s):  
Kameswaran Surendran ◽  
Theodore C. Simon

C-type natriuretic peptide (CNP) regulates salt excretion, vascular tone, and fibroblast proliferation and activation. CNP inhibits fibroblast activation in vitro and fibrosis in vivo, but endogenous CNP gene ( Nppc) expression during tissue fibrosis has not been reported. We determined that Nppc is induced in renal tubular epithelia and then in interstitial myofibroblasts after unilateral ureteral obstruction (UUO). Induction of Nppcoccurred in identical cell populations to those in which Wnt4 is induced after renal injury. In addition, Nppc was activated in Wnt4-expressing cells during nephrogenesis. Wnt signaling components β-catenin and T cell factor/lymphoid enhancer binding factor (TCF/LEF) specifically bound to cognate elements in the Nppc proximal promoter. Wnt-4, β-catenin, and LEF-1 activated an Nppc transgene in cultured cells, and transgene activation by Wnt-4 and LEF-1 was dependent on the presence of intact cognate elements. These findings suggest that Wnt-4 stimulates Nppc in a TCF/LEF-dependent manner after renal injury and thus may contribute to limiting renal fibrosis.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3568-3568
Author(s):  
Teresia A. Magnuson-Osborn ◽  
Claes Dahlgren ◽  
John H. Hartwig ◽  
Thomas P. Stossel

Abstract Gelsolin is a highly conserved intracellular actin-binding protein with an extracellular isoform named plasma gelsolin (pGSN). Relatively high (250 mg /L) blood concentrations of pGSN decrease in response to trauma, major surgery, sepsis, burns, ionizing radiation, and hyperoxia. Depletion of pGSN to a critical (~20%) level precedes and predicts complications of primary injuries such as lung permeability changes, ARDS, assisted ventilation and death. Administration of recombinant pGSN ameliorates such complications and reduces mortality in animal models. A proposed mechanism for pGSN’s protective effects is that it inhibits inflammatory mediators generated during primary injuries, since pGSN binds bioactive mediators, including lysophospatidic acid (LPA) and endotoxin in vitro. Because of its structural similarity we hypothesized that plasma gelsolin binds also to the potent lipid mediator platelet activating factor (PAF) and report here on the inhibition of PAF-induced cellular activation. Recombinant pGSN inhibited PAF-induced P-selectin up-regulation by human platelets as measured by flow cytometry. A ten- to 40-fold molar excess (0.5–20 μM) of pGSN over PAF inhibits P-selectin expression by 40 to 80%. The concentrations of plasma gelsolin used approximate the ~2–3 μM concentrations in plasma, and the molar excess of pGSN over PAF is probably greater in biological systems, where PAF has nanomolar affinity for its receptor. pGSN also inhibited PAF-induced superoxide anion (O2-) production (measured by chemiluminescence) of human neutrophils (PMN) in a concentration-dependent manner. The inhibition was up to 80% at a concentration of 10 μM (tenfold molar excess over PAF). A phospholipid-binding peptide derived from pGSN (QRLFQVKGRR) also inhibited PAF-mediated O2- generation by PMN. The inhibition was 65% at a 1:1 molar ratio (1 μM). In conclusion pGSN interferes with PAF-induced cellular activation in vitro, suggesting a mechanism for the protective role of plasma gelsolin that has been observed in vivo.


2001 ◽  
Vol 75 (11) ◽  
pp. 5335-5342 ◽  
Author(s):  
Kartik Chandran ◽  
Xing Zhang ◽  
Norman H. Olson ◽  
Stephen B. Walker ◽  
James D. Chappell ◽  
...  

ABSTRACT Mammalian reoviruses, prototype members of theReoviridae family of nonenveloped double-stranded RNA viruses, use at least three proteins—ς1, μ1, and ς3—to enter host cells. ς1, a major determinant of cell tropism, mediates viral attachment to cellular receptors. Studies of ς1 functions in reovirus entry have been restricted by the lack of methodologies to produce infectious virions containing engineered mutations in viral proteins. To mitigate this problem, we produced virion-like particles by “recoating” genome-containing core particles that lacked ς1, μ1, and ς3 with recombinant forms of these proteins in vitro. Image reconstructions from cryoelectron micrographs of the recoated particles revealed that they closely resembled native virions in three-dimensional structure, including features attributable to ς1. The recoated particles bound to and infected cultured cells in a ς1-dependent manner and were approximately 1 million times as infectious as cores and 0.5 times as infectious as native virions. Experiments with recoated particles containing recombinant ς1 from either of two different reovirus strains confirmed that differences in cell attachment and infectivity previously observed between those strains are determined by the ς1 protein. Additional experiments showed that recoated particles containing ς1 proteins with engineered mutations can be used to analyze the effects of such mutations on the roles of particle-bound ς1 in infection. The results demonstrate a powerful new system for molecular genetic dissections of ς1 with respect to its structure, assembly into particles, and roles in entry.


Sign in / Sign up

Export Citation Format

Share Document