scholarly journals Monocytes Induce Reversible Focal Changes in Vascular Endothelial Cadherin Complex during Transendothelial Migration under Flow

2000 ◽  
Vol 148 (1) ◽  
pp. 203-216 ◽  
Author(s):  
Jennifer R. Allport ◽  
William A. Muller ◽  
Francis W. Luscinskas

The vascular endothelial cell cadherin complex (VE-cadherin, α-, β-, and γ-catenin, and p120/p100) localizes to adherens junctions surrounding vascular endothelial cells and may play a critical role in the transendothelial migration of circulating blood leukocytes. Previously, we have reported that neutrophil adhesion to human umbilical vein endothelial cell (HUVEC) monolayers, under static conditions, results in a dramatic loss of the VE-cadherin complex. Subsequent studies by us and others (Moll, T., E. Dejana, and D. Vestweber. 1998. J. Cell Biol. 140:403–407) suggested that this phenomenon might reflect degradation by neutrophil proteases released during specimen preparation. We postulated that some form of disruption of the VE-cadherin complex might, nonetheless, be a physiological process during leukocyte transmigration. In the present study, the findings demonstrate a specific, localized effect of migrating leukocytes on the VE-cadherin complex in cytokine-activated HUVEC monolayers. Monocytes and in vitro differentiated U937 cells induce focal loss in the staining of VE-cadherin, α-catenin, β-catenin, and plakoglobin during transendothelial migration under physiological flow conditions. These events are inhibited by antibodies that prevent transendothelial migration and are reversed following transmigration. Together, these data suggest that an endothelial-dependent step of transient and focal disruption of the VE-cadherin complex occurs during leukocyte transmigration.

2008 ◽  
Vol 294 (1) ◽  
pp. G184-G191 ◽  
Author(s):  
Gediminas Cepinskas ◽  
Kazuhiro Katada ◽  
Aurelia Bihari ◽  
Richard F. Potter

Recent studies suggest that exogenously administered CO is beneficial for the resolution of acute inflammation. In this study, we assessed the role of CO liberated from a systemically administered tricarbonyldichlororuthenium-(II)-dimer (CORM-2) on modulation of liver inflammation during sepsis. Polymicrobial sepsis in mice was induced by cecal ligation and perforation (CLP). CORM-2 (8 mg/kg iv) was administered immediately after CLP induction, and neutrophil [polymorphonuclear leukocyte (PMN)] tissue accumulation, activation of transcription factor, NF-κB, and changes in adhesion molecule ICAM-1 expression (inflammation-relevant markers) were assessed in murine liver 24 h later. In addition, the effects and potential mechanisms of CORM-2-released CO in modulation of vascular endothelial cell proinflammatory responses were assessed in vitro. To this end, human umbilical vein endothelial cells (HUVEC) were stimulated with LPS (1 μg/ml) in the presence or absence of CORM-2 (10–100 μM) and production of intracellular reactive oxygen species (ROS), (DHR123 oxidation) and NO (DAF-FM nitrosation) and subsequent activation of NF-κB were assessed 4 h later. In parallel, expression of ICAM-1 and inducible NO synthase (iNOS) proteins along with PMN adhesion to LPS-challenged HUVEC were also assessed. Induction of CLP resulted in increased PMN accumulation, ICAM-1 expression, and activation of NF-κB in the liver of septic mice. These effects were significantly attenuated by systemic administration of CORM-2. In in vitro experiments, CORM-2-released CO attenuated LPS-induced production of ROS and NO, activation of NF-κB, increase in ICAM-1 and iNOS protein expression and PMN adhesion to LPS-stimulated HUVEC. Taken together, these findings indicate that CO released from systemically administered CORM-2 provides anti-inflammatory effects by interfering with NF-κB activation and subsequent downregulation of proadhesive vascular endothelial cell phenotype in the liver of septic mice.


2022 ◽  
Vol 8 ◽  
Author(s):  
Benrong Liu ◽  
Lihua Pang ◽  
Yang Ji ◽  
Lei Fang ◽  
Chao Wei Tian ◽  
...  

Both resveratrol and myocyte enhancer factor 2A (MEF2A) may protect vascular endothelial cell (VEC) through activating the expression of SIRT1. However, the relationship between resveratrol and MEF2A is unclear. We aimed to investigate the deeper mechanism of resveratrol in protecting vascular endothelial cells and whether MEF2A plays a key role in the protective function of resveratrol. Human umbilical vein endothelial cell (HUVEC) was used for in vitro study, and small interfere RNA was used for silencing MEF2A. Silencing MEF2A in the vascular endothelium (VE) of ApoE−/− mice was performed by tail injection with adeno associated virus expressing si-mef2a-shRNA. The results showed that treatment of HUVEC with resveratrol significantly up-regulated MEF2A, and prevented H2O2-induced but not siRNA-induced down-regulation of MEF2A. Under various experimental conditions, the expression of SIRT1 changed with the level of MEF2A. Resveratrol could rescue from cell apoptosis, reduction of cell proliferation and viability induced by H2O2, but could not prevent against that caused by silencing MEF2A with siRNA. Silencing MEF2A in VE of apoE−/− mice decreased the expression of SIRT1, increased the plasma LDL-c, and abrogated the function of resveratrol on reducing triglyceride. Impaired integrity of VE and aggravated atherosclerotic lesion were observed in MEF2A silenced mice through immunofluorescence and oil red O staining, respectively. In conclusion, resveratrol enhances MEF2A expression, and the upregulation of MEF2A is required for the endothelial protective benefits of resveratrol in vitro via activating SIRT1. Our work has also explored the in vivo relevance of this signaling pathway in experimental models of atherosclerosis and lipid dysregulation, setting the stage for more comprehensive phenotyping in vivo and further defining the molecular mechanisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Feng Yao ◽  
Zhen Jin ◽  
Xiaohan Lv ◽  
Zihan Zheng ◽  
Hongqian Gao ◽  
...  

Hydroxytyrosol acetate (HT-AC), a natural polyphenolic compound in olive oil, exerts an anti-inflammatory effect in cardiovascular diseases (CVDs). Pyroptosis is a newly discovered form of programmed inflammatory cell death and is suggested to be involved in the atherosclerosis (AS) process. However, the effect of HT-AC on vascular endothelial cell pyroptosis remains unknown. Thus, we aimed to investigate the effect of HT-AC on vascular endothelial cell pyroptosis in AS and related signaling pathways. In vivo studies showed that HT-AC alleviated the formation of atherosclerotic lesions and inhibited pyroptosis in the aortic intima of ApoE−/− mice fed a high-fat diet (HFD) for 12 weeks. In vitro, we found that HT-AC treatment of human umbilical vein endothelial cells (HUVECs) alleviated tumor necrosis factor-alpha (TNF-α)-induced pyroptosis by decreasing the number of PI positive cells, decreasing the enhanced protein expressions of activated caspase-1 and gasdermin D (GSDMD), as well as by decreasing the release of pro-inflammatory interleukin (IL)-1β and IL-6. Besides, HT-AC down-regulated HDAC11 expression in the aortic intima of HFD-fed ApoE−/− mice and TNF-α-stimulated HUVECs. To determine the underlying mechanism of action, molecular docking and drug affinity responsive target stability (DARTS) were utilized to identify whether HDAC11 protein is a target of HT-AC. The molecular docking result showed good compatibility between HT-AC and HDAC11. DARTS study's result showed that HDAC11 protein may be a target of HT-AC. Further study demonstrated that knockdown of HDAC11 augmented the inhibition of HT-AC on pyroptosis in TNF-α-stimulated HUVECs. These findings indicate that HT-AC might prevent vascular endothelial pyroptosis through down-regulation of HDAC11 related signaling pathway in AS.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3595-3602 ◽  
Author(s):  
Jiafan Qi ◽  
Sandra Goralnick ◽  
Donald L. Kreutzer

Abstract Recent studies in our laboratory, as well as others, have suggested that fibrin can regulate cell function in vitro and likely control inflammation in vivo by acting as a potent cell activator. This has led us to hypothesize that during tissue and vascular injury, fibrin can enhance leukocyte recruitment by inducing vascular endothelial cell expression of leukocyte chemotactic factors. To begin to test this hypothesis, we developed an in vitro model of in situ fibrin polymerization on human umbilical vein endothelial cell culture (HUVEC) and determined the ability of fibrin to induce HUVEC expression of the potent leukocyte chemotactic factor interleukin-8 (IL-8). Our initial studies showed that fibrin induced IL-8 expression in a time- and dose-dependent fashion. Fibrin-induced IL-8 expression in HUVEC could be seen as early as 2 hours post-fibrin stimulation. Additionally, fibrin concentrations as low as 30 μg/mL stimulated a detectable level of IL-8 antigen expression from HUVEC. We also showed that this fibrin induced IL-8 had the identical molecular weight and similar antigenic identity as recombinant and monocyte derived IL-8. Northern blot analysis showed that the IL-8 antigen increase seen in fibrin treated HUVEC was due to fibrin induced elevation of steady state mRNA expression in HUVEC. These data clearly support our hypothesis that fibrin is a potent vascular endothelial cell (VEC) activator that can directly contribute to leukocyte recruitment and activation by inducing leukocyte chemotactic factor expression from VEC.


Blood ◽  
2011 ◽  
Vol 117 (7) ◽  
pp. 2284-2295 ◽  
Author(s):  
Annarita Di Lorenzo ◽  
Thomas D. Manes ◽  
Alberto Davalos ◽  
Paulette L. Wright ◽  
William C. Sessa

Abstract The reticulon (Rtn) family of proteins are localized primarily to the endoplasmic reticulum (ER) of most cells. The Rtn-4 family, (aka Nogo) consists of 3 splice variants of a common gene called Rtn-4A, Rtn-4B, and Rtn-4C. Recently, we identified the Rtn-4B (Nogo-B) protein in endothelial and smooth muscle cells of the vessel wall, and showed that Nogo-B is a regulator of cell migration in vitro and vascular remodeling and angiogenesis in vivo. However, the role of Nogo-B in inflammation is still largely unknown. In the present study, we use 2 models of inflammation to show that endothelial Nogo-B regulates leukocyte transmigration and intercellular adhesion molecule-1 (ICAM-1)–dependent signaling. Mice lacking Nogo-A/B have a marked reduction in neutrophil and monocyte recruitment to sites of inflammation, while Nogo-A/B−/− mice engrafted with wild-type (WT) bone marrow still exhibit impaired inflammation compared with WT mice engrafted with Nogo-A/B−/− bone marrow, arguing for a critical role of host Nogo in this response. Using human leukocytes and endothelial cells, we show mechanistically that the silencing of Nogo-B with small interfering RNA (siRNA) impairs the transmigration of neutrophils and reduces ICAM-1–stimulated phosphorylation of vascular endothelial-cell cadherin (VE-cadherin). Our results reveal a novel role of endothelial Nogo-B in basic immune functions and provide a key link in the molecular network governing endothelial-cell regulation of diapedesis.


1986 ◽  
Vol 83 (7) ◽  
pp. 2114-2117 ◽  
Author(s):  
P. F. Davies ◽  
A. Remuzzi ◽  
E. J. Gordon ◽  
C. F. Dewey ◽  
M. A. Gimbrone

2008 ◽  
Vol 1136 ◽  
Author(s):  
Jing Lu ◽  
Dongwoo Khang ◽  
Thomas J. Webster

ABSTRACTTo study the contribution of different surface feature properties in improving vascular endothelial cell adhesion, rationally designed nano/sub-micron patterns with various dimensions were created on titanium surfaces in this study. In vitro results indicated that endothelial cell adhesion was improved when the titanium pattern dimensions decreased into the nano-scale. Specifically, endothelial cells preferred to adhere on sub-micron and nano rough titanium substrates compared to flat titanium. Moreover, titanium with nano and sub-micron roughness and with the same chemistry as compared to flat titanium, had significantly greater surface energy. Thus, the present study indicated the strong potential of surface nanotopography and nano/sub-micron roughness for improving current vascular stent design.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Satyanarayana Alleboina ◽  
Madhu V Singh ◽  
Thomas Wong ◽  
Ayotunde Dokun

Abstract Peripheral artery disease (PAD) is atherosclerotic occlusion of vessel outside the heart and most commonly affects the lower extremities. Diabetes (DM) accelerates the course and severity of PAD. Studies have shown that vascular endothelial cell NF-κB activity is required for post ischemic adaptation in experimental PAD. To better understand how DM contributes to PAD severity, we investigated the role of DM hyperglycemia in the activation of NF-κB under ischemic conditions. Induced ischemia in human vascular endothelial cell (HUVEC) cultures increased components of both canonical and non-canonical NF-κB pathways in the nucleus (p65 1.0 ± 0.1 vs 1.5 ± 0.2, p< 0.05, RelB 1.0 ± 0.1 vs 1.5 ± 0.2, p<0.01). Similarly, HUVEC acutely exposed to high glucose (HG, 25 mM) activated both canonical (IκB-α degradation, normal vs. HG 1.25 ± 0.02 vs 0.9 ± 0.0, p<0.05) and non-canonical NF-κB (p100 degradation, normal vs HG 0.021±0.001 vs 0.016±0.000, p<0.05) pathways. Prolonged exposure (3 days) of HUVEC to high glucose before ischemia resulted in impaired NF-κB activation as evident from decreased IκB phosphorylation (pIκB/IκB in normal glucose and ischemia 1.56 ± 0.22 vs 1.12 ± 0.35, p<0.01). To understand the signaling pathways underlying the ischemic activation of the NF-κB pathway, we used an array of antibodies to phosphoproteins involved in the inflammatory pathway. Compared to the lysates from cells grown in normal glucose, the lysates from cells grown in prolonged high glucose had dramatically increased phosphorylation of PKC-β2 (PKC-β2pSer661, 8-fold increase). To test whether this increase in PKC-β2pSer66 impairs NF-κB activation by ischemia, we treated HUVECS with prolonged high glucose exposure and ruboxystaurin (Rbx) (20 nM), an inhibitor of PKC-β2 phosphorylation, prior to ischemic exposure. Immunoblotting results confirmed that inhibition of PKC-β2 phosphorylation enhanced the ischemia induced NF-κB activation in HUVEC in this condition. We then tested the effect of Rbx on PKC-β2 phosphorylation and NF-κB activation in vivo in Akita mice, a model for type 1 diabetes. Consistent with our in vitro findings, in experimental PAD, NF-κB activity in the ischemic hind limb of Akita mice was significantly lower than those of the wild type (WT) mice as measured by IκB-α degradation (WT ischemic vs Akita ischemic; 0.04 ± 0.03 vs 0.10 ± 0.04 p<0.05). However, treatment of Akita mice with Rbx increased NF-κB activation in the ischemic hind limb (Akita ischemic 0.10 ± 0.04 vs ischemic+ Rbx 0.05 ± 0.02, p<0.05). Moreover, compared to the WT mice, the untreated Akita mice showed an impaired perfusion in the ischemic limbs (% perfusion recovery, WT vs Akita; 80.1 ± 10.3 vs 55.7 ± 10.1, p<0.05, n=5-8) that was improved in Rbx treated Akita mice (96.3 ± 2.3, p<0.01). Thus, hyperglycemic conditions increase PKC-β2pSer66 in endothelial cells attenuating salutary NF-κB activation contributing to poor PAD outcomes in DM.


2019 ◽  
Vol 316 (1) ◽  
pp. C104-C110 ◽  
Author(s):  
Xuhui Hou ◽  
Songbai Yang ◽  
Jian Yin

The aim of the present study was to investigate the potential role of regulated in development and DNA damage response 1 (REDD1) in LPS-induced vascular endothelial injury by using human umbilical vein endothelial cells (HUVECs). We observed that REDD1 expression was apparently elevated in HUVECs after exposure to LPS. Additionally, elimination of REDD1 strikingly attenuated the secretion of the proinflammatory cytokines TNF-α, IL-6, IL-1β, and monocyte chemotactic protein-1 and the endothelial cell adhesion markers ICAM-1 and VCAM-1 that was induced by LPS stimulation. Subsequently, knockdown of REDD1 augmented cell viability but ameliorated lactate dehydrogenase release in HUVECs stimulated with LPS. Meanwhile, depletion of REDD1 effectively restricted LPS-induced HUVEC apoptosis, as exemplified by reduced DNA fragmentation, and it also elevated antiapoptotic Bcl-2 protein, concomitant with reduced levels of proapoptotic proteins Bax and cleaved caspase-3. Furthermore, repression of REDD1 remarkably alleviated LPS-triggered intracellular reactive oxygen species generation accompanied by decreased malondialdehyde content and increased the activity of the endogenous antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. Most important, depletion of REDD1 protected HUVECs against inflammation-mediated apoptosis and oxidative damage partly through thioredoxin-interacting protein (TXNIP). Collectively, these findings indicate that blocking the REDD1/TXNIP axis repressed the inflammation-mediated vascular injury process, which may be closely related to oxidative stress and apoptosis in HUVECs, implying that the REDD1/TXNIP axis may be a new target for preventing the endothelial cell injury process.


Sign in / Sign up

Export Citation Format

Share Document