scholarly journals Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction

2018 ◽  
Vol 217 (3) ◽  
pp. 895-914 ◽  
Author(s):  
David M. Graham ◽  
Tomas Andersen ◽  
Lisa Sharek ◽  
Gunes Uzer ◽  
Katheryn Rothenberg ◽  
...  

The nucleus has long been postulated to play a critical physical role during cell polarization and migration, but that role has not been defined or rigorously tested. Here, we enucleated cells to test the physical necessity of the nucleus during cell polarization and directed migration. Using enucleated mammalian cells (cytoplasts), we found that polarity establishment and cell migration in one dimension (1D) and two dimensions (2D) occur without the nucleus. Cytoplasts directionally migrate toward soluble (chemotaxis) and surface-bound (haptotaxis) extracellular cues and migrate collectively in scratch-wound assays. Consistent with previous studies, migration in 3D environments was dependent on the nucleus. In part, this likely reflects the decreased force exerted by cytoplasts on mechanically compliant substrates. This response is mimicked both in cells with nucleocytoskeletal defects and upon inhibition of actomyosin-based contractility. Together, our observations reveal that the nucleus is dispensable for polarization and migration in 1D and 2D but critical for proper cell mechanical responses.

2008 ◽  
Vol 294 (6) ◽  
pp. C1465-C1475 ◽  
Author(s):  
Melissa Z. Mercure ◽  
Roman Ginnan ◽  
Harold A. Singer

Previous studies indicate involvement of the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) in vascular smooth muscle (VSM) cell migration. In the present study, molecular loss-of-function studies were used specifically to assess the role of the predominant CaMKIIδ2 isoform on VSM cell migration using a scratch wound healing assay. Targeted CaMKIIδ2 knockdown using siRNA or inhibition of activity by overexpressing a kinase-negative mutant resulted in attenuation of VSM cell migration. Temporal and spatial assessments of kinase autophosphorylation indicated rapid and transient activation in response to wounding, in addition to a sustained activation in the leading edge of migrating and spreading cells. Furthermore, siRNA-mediated suppression of CaMKIIδ2 resulted in the inhibition of wound-induced Rac activation and Golgi reorganization, and disruption of leading edge morphology, indicating an important function for CaMKIIδ2 in regulating VSM cell polarization. Numerous previous reports link activation of CaMKII to ERK1/2 signaling in VSM. Wound-induced ERK1/2 activation was also found to be dependent on CaMKII; however, ERK activity did not account for effects of CaMKII in regulating Golgi polarization, indicating alternative mechanisms by which CaMKII affects the complex events involved in cell migration. Wounding a VSM cell monolayer results in CaMKIIδ2 activation, which positively regulates VSM cell polarization and downstream signaling, including Rac and ERK1/2 activation, leading to cell migration.


2018 ◽  
Vol 115 (34) ◽  
pp. 8581-8586 ◽  
Author(s):  
Pengbo Wang ◽  
Marcel Dreger ◽  
Elena Madrazo ◽  
Craig J. Williams ◽  
Rafael Samaniego ◽  
...  

Cell migration through extracellular matrices requires nuclear deformation, which depends on nuclear stiffness. In turn, chromatin structure contributes to nuclear stiffness, but the mechanosensing pathways regulating chromatin during cell migration remain unclear. Here, we demonstrate that WD repeat domain 5 (WDR5), an essential component of H3K4 methyltransferase complexes, regulates cell polarity, nuclear deformability, and migration of lymphocytes in vitro and in vivo, independent of transcriptional activity, suggesting nongenomic functions for WDR5. Similarly, depletion of RbBP5 (another H3K4 methyltransferase subunit) promotes similar defects. We reveal that a 3D environment increases the H3K4 methylation dependent on WDR5 and results in a globally less compacted chromatin conformation. Further, using atomic force microscopy, nuclear particle tracking, and nuclear swelling experiments, we detect changes in nuclear mechanics that accompany the epigenetic changes induced in 3D conditions. Indeed, nuclei from cells in 3D environments were softer, and thereby more deformable, compared with cells in suspension or cultured in 2D conditions, again dependent on WDR5. Dissecting the underlying mechanism, we determined that actomyosin contractility, through the phosphorylation of myosin by MLCK (myosin light chain kinase), controls the interaction of WDR5 with other components of the methyltransferase complex, which in turn up-regulates H3K4 methylation activation in 3D conditions. Taken together, our findings reveal a nongenomic function for WDR5 in regulating H3K4 methylation induced by 3D environments, physical properties of the nucleus, cell polarity, and cell migratory capacity.


2016 ◽  
Vol 212 (2) ◽  
pp. 199-217 ◽  
Author(s):  
Cédric Plutoni ◽  
Elsa Bazellieres ◽  
Maïlys Le Borgne-Rochet ◽  
Franck Comunale ◽  
Agusti Brugues ◽  
...  

Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell–cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/β-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through β-PIX, which is specifically recruited at cell–cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through β-PIX–mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM.


2011 ◽  
Vol 22 (8) ◽  
pp. 1252-1262 ◽  
Author(s):  
Juan F. Aranda ◽  
Natalia Reglero-Real ◽  
Leonor Kremer ◽  
Beatriz Marcos-Ramiro ◽  
Ana Ruiz-Sáenz ◽  
...  

Membrane organization into condensed domains or rafts provides molecular platforms for selective recruitment of proteins. Cell migration is a general process that requires spatiotemporal targeting of Rac1 to membrane rafts. The protein machinery responsible for making rafts competent to recruit Rac1 remains elusive. Some members of the MAL family of proteins are involved in specialized processes dependent on this type of membrane. Because condensed membrane domains are a general feature of the plasma membrane of all mammalian cells, we hypothesized that MAL family members with ubiquitous expression and plasma membrane distribution could be involved in the organization of membranes for cell migration. We show that myeloid-associated differentiation marker (MYADM), a protein with unique features within the MAL family, colocalizes with Rac1 in membrane protrusions at the cell surface and distributes in condensed membranes. MYADM knockdown (KD) cells had altered membrane condensation and showed deficient incorporation of Rac1 to membrane raft fractions and, similar to Rac1 KD cells, exhibited reduced cell spreading and migration. Results of rescue-of-function experiments by expression of MYADM or active Rac1L61 in cells knocked down for Rac1 or MYADM, respectively, are consistent with the idea that MYADM and Rac1 act on parallel pathways that lead to similar functional outcomes.


2011 ◽  
Vol 22 (22) ◽  
pp. 4302-4311 ◽  
Author(s):  
Miguel A. Moreno-Mateos ◽  
Águeda G. Espina ◽  
Belén Torres ◽  
María M. Gámez del Estal ◽  
Ana Romero-Franco ◽  
...  

Pituitary tumor transforming gene 1 (PTTG1), also known as securin, has been implicated in many biological functions, including inhibition of sister chromatid separation, DNA repair, organ development, and regulation of the expression and secretion of angiogenic and metastatic factors. Although most of these functions of securin seem to depend on the localization of PTTG1 in the nucleus of the cell, a fraction of the protein has been also detected in the cytoplasm. Here we demonstrate that, in different cell types, a portion of cytoplasmic PTTG1 is associated with the cis face of the Golgi apparatus and that this localization depends on PTTG1 phosphorylation status. In this organelle, PTTG1 forms a complex with proteins involved in microtubule nucleation, including GM130, AKAP450, and γ-tubulin. RNA interference–mediated depletion of PTTG1 produces a delay in centrosomal and noncentrosomal microtubule nucleation. Cells lacking PTTG1 show severe defects in both cell polarization and migration in wound-healing assays. To our knowledge, this is the first study reporting the role of PTTG1 in microtubule nucleation and cell polarization, two processes directly involved in cell migration. We believe that these findings will contribute to understanding the mechanisms underlying PTTG1-mediated biological functions.


2021 ◽  
Vol 118 (22) ◽  
pp. e2021135118
Author(s):  
Robert S. Fischer ◽  
Xiaoyu Sun ◽  
Michelle A. Baird ◽  
Matt J. Hourwitz ◽  
Bo Ri Seo ◽  
...  

Contact guidance is a powerful topographical cue that induces persistent directional cell migration. Healthy tissue stroma is characterized by a meshwork of wavy extracellular matrix (ECM) fiber bundles, whereas metastasis-prone stroma exhibit less wavy, more linear fibers. The latter topography correlates with poor prognosis, whereas more wavy bundles correlate with benign tumors. We designed nanotopographic ECM-coated substrates that mimic collagen fibril waveforms seen in tumors and healthy tissues to determine how these nanotopographies may regulate cancer cell polarization and migration machineries. Cell polarization and directional migration were inhibited by fibril-like wave substrates above a threshold amplitude. Although polarity signals and actin nucleation factors were required for polarization and migration on low-amplitude wave substrates, they did not localize to cell leading edges. Instead, these factors localized to wave peaks, creating multiple “cryptic leading edges” within cells. On high-amplitude wave substrates, retrograde flow from large cryptic leading edges depolarized stress fibers and focal adhesions and inhibited cell migration. On low-amplitude wave substrates, actomyosin contractility overrode the small cryptic leading edges and drove stress fiber and focal adhesion orientation along the wave axis to mediate directional migration. Cancer cells of different intrinsic contractility depolarized at different wave amplitudes, and cell polarization response to wavy substrates could be tuned by manipulating contractility. We propose that ECM fibril waveforms with sufficiently high amplitude around tumors may serve as “cell polarization barriers,” decreasing directional migration of tumor cells, which could be overcome by up-regulation of tumor cell contractility.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Daniel Čapek ◽  
Michael Smutny ◽  
Alexandra-Madelaine Tichy ◽  
Maurizio Morri ◽  
Harald Janovjak ◽  
...  

Non-canonical Wnt signaling plays a central role for coordinated cell polarization and directed migration in metazoan development. While spatiotemporally restricted activation of non-canonical Wnt-signaling drives cell polarization in epithelial tissues, it remains unclear whether such instructive activity is also critical for directed mesenchymal cell migration. Here, we developed a light-activated version of the non-canonical Wnt receptor Frizzled 7 (Fz7) to analyze how restricted activation of non-canonical Wnt signaling affects directed anterior axial mesendoderm (prechordal plate, ppl) cell migration within the zebrafish gastrula. We found that Fz7 signaling is required for ppl cell protrusion formation and migration and that spatiotemporally restricted ectopic activation is capable of redirecting their migration. Finally, we show that uniform activation of Fz7 signaling in ppl cells fully rescues defective directed cell migration in fz7 mutant embryos. Together, our findings reveal that in contrast to the situation in epithelial cells, non-canonical Wnt signaling functions permissively rather than instructively in directed mesenchymal cell migration during gastrulation.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 211
Author(s):  
Zhong-Jian Shen ◽  
Jie Hu ◽  
Melissa A. O’Neal ◽  
James S. Malter

Eosinophils become polarized in response to cytokines such IL-5 or eotaxin prior to directional migration. Polarization is preceded by F-actin assembly, but the mechanisms that regulate these events and how the shape change influences cell migration from the peripheral blood into the lung remain unclear. In this study, we show that the prolyl isomerase, Pin1, is required for IL-5-induced Eos polarization and migration. Co-immunoprecipitation and immunofluorescence analysis revealed that Pin1 directly interacts with members of Rho GTPase family. Mouse eosinophils lacking Pin1 or human cells treated with Pin1 inhibitors showed significantly reduced IL-5-induced GTPase activity and cofilin phosphorylation, resulting in reduced F-actin polymerization, cell polarization, and directional migration to chemokines. Our result suggests that Pin1 regulates cytoskeletal re-organization, eosinophil morphology, and cell migration through the modulation of Rho GTPase activity. Targeting Pin1 along with GTPases could provide a new approach to reduce pulmonary Eos accumulation during asthmatic exacerbations.


2019 ◽  
Vol 19 (25) ◽  
pp. 2271-2282 ◽  
Author(s):  
Bo Lu ◽  
Xue-Hui Liu ◽  
Si-Ming Liao ◽  
Zhi-Long Lu ◽  
Dong Chen ◽  
...  

Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation. However, the molecular mechanisms of NCAM polysialylation and cell migration are still not entirely clear. In this minireview, the recent research results about the intermolecular interactions between the PBR and NCAM, the PSTD and cytidine monophosphate-sialic acid (CMP-Sia), the PSTD and polySia, and as well as the intramolecular interaction between the PBR and the PSTD within the polyST, are summarized. Based on these cooperative interactions, we have built a novel model of NCAM polysialylation and cell migration mechanisms, which may be helpful to design and develop new polysialyltransferase inhibitors.


Sign in / Sign up

Export Citation Format

Share Document