scholarly journals STUDIES ON THE ORIGIN OF HUMAN LEUKOCYTIC PYROGEN

1970 ◽  
Vol 131 (4) ◽  
pp. 727-743 ◽  
Author(s):  
James J. Nordlund ◽  
Richard K. Root ◽  
Sheldon M. Wolff

Release of the protein molecule, leukocytic pyrogen, is one of the many reactions exhibited by leukocytes after phagocytosis. After the ingestion of heat-killed S. albus, a 3–4 hr latent period exists, during which human peripheral leukocytes release no pyrogen, yet cellular metabolism is altered in such a way that pyrogen output may subsequently occur in the absence of further phagocytosis. Transcription of messenger RNA and translation of new protein are initial events in the. activation process, since addition of the inhibitors, actinomycin D, and cycloheximide or puromycin, during this period markedly depressed or abolished subsequent pyrogen release. These effects were noted to be dependent upon the time of addition of the inhibitors. None of the inhibitor drugs interfered with cell viability as measured by phagocytosis and hexose monophosphate shunt activity, nor did they alter the pyrogenicity of preformed leukocytic pyrogen. Vincristine did not inhibit pyrogen formation, consistent with its reported failure to alter RNA synthesis in mature human granulocytes. The glycolytic inhibitor, sodium fluoride, blocked pyrogen release both when added prior to particle ingestion or 1 hr after the initiation of phagocytosis. Whereas inhibition of phagocytosis would explain the sodium fluoride effect prior to 1 hr, this was not observed in leukocyte preparations incubated for 1 hr with S. albus before adding sodium fluoride. When sodium fluoride was added to preparations 2 hr after the start of incubation, the LP production was unimpaired. Potassium cyanide had no effect on cell activation or pyrogen release. These findings suggest that the primary energy supply for the activation process is derived from high energy phosphate bonds provided by anaerobic glycolysis. Since the major amount of cell activation appears to occur in the 1st hr after phagocytosis, this energy might be involved in the induction of a genome leading to the transcription of m-RNA and its translation into new protein or is required for polysome integrity during protein synthesis. It is suggested that this new protein may be leukocytic pyrogen itself, or an enzyme responsible for cleaving it from an inactive precursor.

2008 ◽  
Vol 19 (10) ◽  
pp. 4238-4248 ◽  
Author(s):  
Gunter Maubach ◽  
Michelle Chin Chia Lim ◽  
Lang Zhuo

Activation of hepatic stellate cells during liver fibrosis is a major event facilitating an increase in extracellular matrix deposition. The up-regulation of smooth muscle α-actin and collagen type I is indicative of the activation process. The involvement of cysteine cathepsins, a class of lysosomal cysteine proteases, has not been studied in conjunction with the activation process of hepatic stellate cells. Here we report a nuclear cysteine protease activity partially attributed to cathepsin F, which co-localizes with nuclear speckles. This activity can be regulated by treatment with retinol/palmitic acid, known to reduce the hepatic stellate cell activation. The treatment for 48 h leads to a decrease in activity, which is coupled to an increase in cystatin B and C transcripts. Cystatin B knockdown experiments during the same treatment confirm the regulation of the nuclear activity by cystatin B. We demonstrate further that the inhibition of the nuclear activity by E-64d, a cysteine protease inhibitor, results in a differential regulation of smooth muscle α-actin and collagen type I transcripts. On the other hand, cathepsin F small interfering RNA transfection leads to a decrease in nuclear activity and a transcriptional down-regulation of both activation markers. These findings indicate a possible link between nuclear cathepsin F activity and the transcriptional regulation of hepatic stellate cell activation markers.


2021 ◽  
Author(s):  
Xiaoyu Chen ◽  
Pu Chang ◽  
Shuo Zhang ◽  
Lixiu Guan ◽  
Guohe Ren ◽  
...  

Abstract The supercapacitors possessing high energy storage and long serving period have strategic significance to solve the energy crisis issues. Herein, fluffy nano-dendrite structured cobalt phosphide (CoP) is grown on carbon cloth through simple hydrothermal and electrodeposition treatments (CoP/C-HE). Benefit from its excellent electrical conductivity and special structure, CoP/C-HE manifests a high specific capacity of 461.4 C g-1 at 1 A g-1. Meanwhile, the capacity retention remains 92.8% over 10000 cycles at 5 A g-1, proving the superior cycling stability. The phase conversion of Co2P during the activation process also contributes to the improved performance. The assembled two-electrode asymmetric supercapacitor demonstrates excellent performance in terms of energy density (42.4 W h kg-1 at a power density of 800.0 W kg-1) and cycling stability (86.3% retention over 5000 cycles at 5 A g-1), which is superior to many reported cobalt-based supercapacitors. Our work promotes the potential of transition metal phosphides for the applications in supercapacitors.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2733-2741 ◽  
Author(s):  
David Peters ◽  
Masahiro Tsuchida ◽  
Eric R. Manthei ◽  
Tausif Alam ◽  
Clifford S. Cho ◽  
...  

The activation of blood cells, including T cells, triggers intracellular signals that control the expression of critical molecules, including cytokines and cytokine receptors. We show that T-cell receptor (TCR) ligation increases the cellular level of the protein linker for activation of T cells (LAT), a molecule critical for T-cell development and function. T-cell activation increased LAT messenger RNA, as determined by reverse transcription–polymerase chain reaction and by Northern blotting. The TCR-induced increase in LAT expression involved the activation of the serine/threonine kinases PKC and MEK, because inhibitors of these kinases blocked the increase in LAT. Accordingly, the PKC activator phorbol myristate acetate up-regulated LAT expression. Strikingly, the calcineurin inhibitors cyclosporin A (CsA) and FK506 strongly potentiated TCR-induced LAT expression, suggesting that the activation of calcineurin following TCR ligation negatively regulates LAT expression. Accordingly, Ca++ ionophores, which can activate calcineurin by increasing intracellular Ca++, blocked the TCR-induced increase in cellular LAT. CsA and FK506 blocked the Ca++ionophores' inhibitory effect on LAT expression. Notably, CsA and FK506 preferentially up-regulated TCR-induced LAT expression; under the same conditions, these compounds did not increase the expression of 14 other molecules that previously had been implicated in T-cell activation. These data show that TCR-induced LAT expression involves the activation of the PKC-Erk pathway and is negatively regulated by the activation of calcineurin. Furthermore, the potentiation of TCR-induced LAT expression by CsA and FK506 suggests that the action of these agents involves up-regulating the cellular level of critical signaling molecules. These findings may have important therapeutic implications.


2011 ◽  
Vol 194-196 ◽  
pp. 665-668
Author(s):  
Chun Huan Chen ◽  
Rui Ming Ren

In order to synthesize WC-Co nanopowders through an integrated mechanical and thermal activation process, WO3-Co2O3-C nanopowders need to be obtained first. It is critical how to obtain the WO3-Co2O3-C nanopowders efficiently. The effect of processing parameters on the grain size during high-energy-milling of WO3-Co2O3-C mixed powders was studied via X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the grain size of reactants can be effectively decreased with increasing the milling time, rotation speed, and charge ratio. After a certain time milling, both WO3 and C powders achieve nano-level in grain size and mixed homogeneously. The appropriate milling parameters for fabricating nanosized WO3+C+Co2O3 powders are suggested to be 4 to 8 hours of milling time, 400 RPM of rotation speed, and 40:1 to 60:1 of charge ratio.


1995 ◽  
Vol 15 (3) ◽  
pp. 1294-1301 ◽  
Author(s):  
I Alkalay ◽  
A Yaron ◽  
A Hatzubai ◽  
S Jung ◽  
A Avraham ◽  
...  

NF-kappa B is a major inducible transcription factor in many immune and inflammatory reactions. Its activation involves the dissociation of the inhibitory subunit I kappa B from cytoplasmic NF-kappa B/Rel complexes, following which the Rel proteins are translocated to the nucleus, where they bind to DNA and activate transcription. Phosphorylation of I kappa B in cell-free experiments results in its inactivation and release from the Rel complex, but in vivo NF-kappa B activation is associated with I kappa B degradation. In vivo phosphorylation of I kappa B alpha was demonstrated in several recent studies, but its role is unknown. Our study shows that the T-cell activation results in rapid phosphorylation of I kappa B alpha and that this event is a physiological one, dependent on appropriate lymphocyte costimulation. Inducible I kappa B alpha phosphorylation was abolished by several distinct NF-kappa B blocking reagents, suggesting that it plays an essential role in the activation process. However, the in vivo induction of I kappa B alpha phosphorylation did not cause the inhibitory subunit to dissociate from the Rel complex. We identified several protease inhibitors which allow phosphorylation of I kappa B alpha but prevent its degradation upon cell stimulation, presumably through inhibition of the cytoplasmic proteasome. In the presence of these inhibitors, phosphorylated I kappa B alpha remained bound to the Rel complex in the cytoplasm for an extended period of time, whereas NF-kappa B activation was abolished. It appears that activation of NF-kappa B requires degradation of I kappa B alpha while it is a part of the Rel cytoplasmic complex, with inducible phosphorylation of the inhibitory subunit influencing the rate of degradation.


1957 ◽  
Vol 3 (3) ◽  
pp. 363-380 ◽  
Author(s):  
B. A. Kihlman

The finding of Lilly and Thoday that potassium cyanide produces structural chromosome changes in root tips of Vicia faba was confirmed. Like mustards, diepoxides, and maleic hydrazide, potassium cyanide seems to act on cells at early interphase. A tendency of cyanide breaks to be concentrated in heterochromatic segments of the chromosomes was evident. The production of chromosome aberrations by cyanide proved to be practically unaffected by the temperature during treatment. In agreement with Lilly and Thoday, the effect of potassium cyanide was found to be dependent on oxygen tension during treatment. The effect of potassium cyanide increases with increasing oxygen concentration up to 100 per cent oxygen. In the absence of oxygen, potassium cyanide was not completely inactive, but produced a low, though significant frequency of aberrations. Pretreatments with 2.4-dinitrophenol did not influence the effect of potassium cyanide. When bean roots were treated with potassium cyanide before a treatment with 8-ethoxycaffeine, or at the same time as they were treated with 8-ethoxycaffeine, the effect of 8-ethoxycaffeine was almost completely suppressed. The effects of a number of other heavy metal complexing agents were also tested. Sodium fluoride, potassium thiocyanate, carbon monoxide, o-phenanthroline, 2.2-bipyridine, and sodium azide were without radiomimetic effect under the conditions employed, and so was a mixture of sodium azide and sodium fluoride. A low, but quite significant, radiomimetic effect was obtained after treatments with sodium diethyldithiocarbamate, cupferron, and 8-hydroxyquinoline. Under anaerobic conditions, the effects of cyanide and cupferron were both quantitatively and qualitatively indistinguishable. Unlike the effect of cyanide, the effect of cupferron was not enhanced by the presence of oxygen. The effects of the same heavy metal complexing agents were tested on the activities of the enzymes catalase and peroxidase. The activities of both of these enzymes were found to be totally inhibited only by potassium cyanide. In the other cases, little correlation was found between ability to inhibit the activities of these enzymes and ability to produce chromosome aberrations. In a number of experiments, hydrogen peroxide was found to be without radiomimetic effect, whether alone or in combination with potassium cyanide. t-Butyl hydroperoxide proved to be active. The effect of t-butyl hydroperoxide was substantially increased by pretreatments with 2.4.-dinitrophenol. The results are discussed, and it is concluded that the observations made do not support the hypothesis that hydrogen peroxide is involved in the production of chromosome aberrations by potassium cyanide. The possibility that organic peroxides are involved cannot be excluded on the bases of the experimental results. As an alternative hypothesis, it is suggested that iron or other heavy metals are present in the chromosomes and that cyanide and other heavy metal complexing agents produce chromosome aberrations by reacting with these metals.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. TPS19-TPS19
Author(s):  
Patrick Michael Dillon ◽  
Bethany J Horton ◽  
Timothy Bullock ◽  
Christiana Brenin ◽  
David R. Brenin

TPS19 Background: Focused ultrasound (FUS) is an ablative therapy which can heat tumors rapidly to cell damaging temperatures and simultaneously perturb the microenvironment, the microvasculature, and the lymphatics. At typical energy levels, FUS can induce controlled apoptotic cell death rather than liquefactive necrosis. FUS does not involve radiation. FUS is a partially ablative therapy using high energy ultrasound waves to induce heat shock proteins, cytokine release and cellular mediated mechanisms resulting in T cell activation and recognition of tumor antigens. FUS has been demonstrated to be an effective method for inducing tumor antigen exposure and presentation to dendritic cells, thus acting as an auto-vaccine. Pembrolizumab (PBZ) is a PD-1 targeted antibody used in multiple solid tumors to augment T cell activation. It is hypothesized that the combination of these two modalities will result in T cell infiltration into breast tumors as well as systemic immune responses. Methods: In this pilot study, we will examine PBZ therapy in combination with FUS to assess for immune stimulation and antitumor effects at local ablation sites, distant non-treated sites and in the blood. Biopsy before and after treatments will examine the tissue in the peripheral zone of ablation as well as at distant metastatic sites for CD8 and CD4 T cells, MDSC’s, T-regulatory cells and cytokine responses. Twelve patients will be randomized to receive either PBZ 14 days before or 7 days after a single time FUS partial tumor ablation on day 15. Biopsies will be on days 1, 22 and 64 and tumor imaging will be every 12 weeks. Patients must have metastatic or unresectable breast cancer, adequate organ function, and prior therapy in the metastatic setting. They must also have a tumor in the breast or axilla amenable to FUS and biopsy. Clinical trial information: NCT03237572.


Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4517-4524 ◽  
Author(s):  
Paritosh Ghosh ◽  
Meredith A. Buchholz ◽  
Shingo Yano ◽  
Dennis Taub ◽  
Dan L. Longo

The consequences of T-cell activation depend exclusively on costimulation during antigen–T-cell receptor interaction. Interaction between the T-cell coreceptor CD28 and its ligand B7 during antigen-antigen receptor engagement results in full activation of T cells, the outcomes of which are proliferation and effector functions. The ability of CD28 to costimulate the production of interleukin-2 (IL-2) explains the importance of this costimulation. The signaling event mediated by CD28 engagement has been proposed to have 2 components: one is sensitive to the immunosuppressive drug cyclosporin A (CsA), and the other one is CsA-resistant. In this report, we demonstrate that the CsA-resistant pathway is sensitive to the immunosuppressive drug rapamycin. Treatment with rapamycin blocked IL-2 production after activation of human peripheral blood T cells with phorbol ester (PMA) and anti-CD28 (CsA-resistant pathway), whereas this drug did not have any effect on PMA plus ionomycin stimulation (CsA-sensitive pathway). The inhibitory effect of rapamycin was on messenger RNA stability and translation, rather than on IL-2 transcription or protein turnover.


Sign in / Sign up

Export Citation Format

Share Document