scholarly journals Dendritic cells initiate a two-stage mechanism for T lymphocyte proliferation.

1983 ◽  
Vol 157 (4) ◽  
pp. 1101-1115 ◽  
Author(s):  
J M Austyn ◽  
R M Steinman ◽  
D E Weinstein ◽  
A Granelli-Piperno ◽  
M A Palladino

T cells oxidized with sodium periodate proliferate polyclonally in response to accessory cells. We confirmed previous work showing that DC are potent stimulators of this response. In addition, the accessory function of unfractionated mouse spleen and spleen adherent cells was markedly reduced after elimination of DC with a specific monoclonal antibody and complement. Therefore oxidative mitogenesis was used as a model to study the mechanism by which DC stimulate T cell proliferative responses. A two-stage mechanism was identified. The first stage occurred during the first 20 h of culture, required live DC, and involved the progressive release of interleukin 2 (IL-2) into the medium and acquisition of responsiveness to this growth factor. The second stage occurred between 20 and 40 h, did not require live DC, and involved DNA synthesis in response to IL-2. Similar events occurred during culture of DC with unmodified T cells (syngeneic MLR) but were quantitatively reduced. The experimental approach was to co-culture DC and T cells for up to 20 h and then kill the DC with specific antibody, or anti-Ia antibody, and complement. Subsequent proliferation was inhibited if the T cells were cultured in fresh medium. However, proliferation was restored when the lymphocytes were cultured in the original DC-T cell medium, or with a crude or a purified preparation of IL-2. IL-2 did not induce the proliferation of T cells that had been cultured in the absence of DC, and did not synergize with viable DC. We conclude that DC induce proliferation by tightly coordinating the release of, and responsiveness to, T cell growth factor or IL-2.

Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 1115-1123 ◽  
Author(s):  
Carlo Agostini ◽  
Livio Trentin ◽  
Rosaria Sancetta ◽  
Monica Facco ◽  
Cristina Tassinari ◽  
...  

Abstract The impairment of interleukin-2 (IL-2) production occurs very early after human immunodeficiency virus (HIV) infection as a consequence of the quantitative depletion of Th1 cells. Despite the shift in cytokine production, most individuals develop an oligoclonal expansion of major histocompatibility complex restricted, HIV-specific CD8+ cytotoxic T lymphocytes (CTL) in different organs, suggesting that other cytokines replace IL-2 in initiating the tissue infiltration of CD8+ T cells. In this study we show that IL-15, a product of monocyte-macrophages and non-T cells and which has overlapping biological activities with IL-2, is involved in local cell networks accounting for the activation and expansion of CD8+ T-cell pools in a highly affected organ, ie, the lung. IL-15 induced proliferation of T cells obtained from the lower respiratory tract of HIV-infected patients with T-cell alveolitis and severe depletion of CD4+ T cells. Lung lymphocytes were CD45R0+/CD8+ T cells spontaneously expressing activation markers (CD69 and HLA-DR) and equipped with the receptorial subunits which bind IL-15, notably the β and γ chains of the IL-2 receptor (IL-2R) and the recently identified IL-15 binding-protein termed IL-15Rα. Similar phenotypic findings were obtained after incubation of normal T cells with IL-15, which induced CD8+ T cells to express activation markers and to proliferate. The block of the IL-2Rβ/IL-2Rγ complex with specific monoclonal antibodies abolished the T-cell stimulatory activity of IL-15 while the combination of IL-15 and tumor necrosis factor-α upregulated the proliferative response of lung T lymphocytes. The hypothesis that the tissue growth of lung CD8+ lymphocytes may involve cytokines produced from cells other than T lymphocytes was confirmed by the evidence that pulmonary macrophages expressed high levels of IL-15 and that anti–IL-15 antibodies inhibited the accessory function of alveolar macrophages on mitogen-induced CD8+ T-cell proliferation. Together, these results suggest that macrophage-derived cytokines produced at sites of T-cell infiltration play a role in the activation of HIV-specific CD8+ T-cell–mediated immune response.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 1115-1123 ◽  
Author(s):  
Carlo Agostini ◽  
Livio Trentin ◽  
Rosaria Sancetta ◽  
Monica Facco ◽  
Cristina Tassinari ◽  
...  

The impairment of interleukin-2 (IL-2) production occurs very early after human immunodeficiency virus (HIV) infection as a consequence of the quantitative depletion of Th1 cells. Despite the shift in cytokine production, most individuals develop an oligoclonal expansion of major histocompatibility complex restricted, HIV-specific CD8+ cytotoxic T lymphocytes (CTL) in different organs, suggesting that other cytokines replace IL-2 in initiating the tissue infiltration of CD8+ T cells. In this study we show that IL-15, a product of monocyte-macrophages and non-T cells and which has overlapping biological activities with IL-2, is involved in local cell networks accounting for the activation and expansion of CD8+ T-cell pools in a highly affected organ, ie, the lung. IL-15 induced proliferation of T cells obtained from the lower respiratory tract of HIV-infected patients with T-cell alveolitis and severe depletion of CD4+ T cells. Lung lymphocytes were CD45R0+/CD8+ T cells spontaneously expressing activation markers (CD69 and HLA-DR) and equipped with the receptorial subunits which bind IL-15, notably the β and γ chains of the IL-2 receptor (IL-2R) and the recently identified IL-15 binding-protein termed IL-15Rα. Similar phenotypic findings were obtained after incubation of normal T cells with IL-15, which induced CD8+ T cells to express activation markers and to proliferate. The block of the IL-2Rβ/IL-2Rγ complex with specific monoclonal antibodies abolished the T-cell stimulatory activity of IL-15 while the combination of IL-15 and tumor necrosis factor-α upregulated the proliferative response of lung T lymphocytes. The hypothesis that the tissue growth of lung CD8+ lymphocytes may involve cytokines produced from cells other than T lymphocytes was confirmed by the evidence that pulmonary macrophages expressed high levels of IL-15 and that anti–IL-15 antibodies inhibited the accessory function of alveolar macrophages on mitogen-induced CD8+ T-cell proliferation. Together, these results suggest that macrophage-derived cytokines produced at sites of T-cell infiltration play a role in the activation of HIV-specific CD8+ T-cell–mediated immune response.


1994 ◽  
Vol 179 (6) ◽  
pp. 1799-1808 ◽  
Author(s):  
L M Karnitz ◽  
S L Sutor ◽  
R T Abraham

The proliferation of antigen-activated T cells is mediated by the T cell-derived growth factor, interleukin 2 (IL-2). The biochemical signaling cascades initiating IL-2-induced growth are dependent upon protein tyrosine kinase (PTK) activity. One IL-2-regulated PTK implicated in this cascade is the Src-family kinase, Fyn. Previous studies have described a physical association between Fyn and a potential downstream substrate, phosphatidylinositol 3-kinase (PI3-kinase) as well as the IL-2-dependent activation of PI3-kinase in T cells; however, the role of Fyn in IL-2-induced PI3-kinase activation remains unclear. In this report, we demonstrate that IL-2 stimulation triggers tyrosine phosphorylation of the p85 subunit of PI3-kinase in the murine T cell line, CTLL-2. Lysates prepared from growth factor-deprived and IL-2-stimulated T cells reconstituted both the binding of CTLL-2 cell-derived Fyn to and the IL-2-inducible tyrosine phosphorylation of exogenously added recombinant p85. Furthermore, overexpression of wild-type Fyn in these cells enhanced both the basal and IL-2-mediated activation of PI3-kinase. Additional studies of the Fyn-PI3-kinase interaction demonstrated that the Src homology 3 (SH3) domain of Fyn constitutes a direct binding site for the p85 subunit of PI3-kinase. These results support the notion that Fyn may be directly involved in the activation of the downstream signaling enzyme, PI3-kinase, in IL-2-stimulated T cells.


1983 ◽  
Vol 158 (6) ◽  
pp. 2040-2057 ◽  
Author(s):  
K Inaba ◽  
A Granelli-Piperno ◽  
R M Steinman

Dendritic cells (DC) are essential accessory cells for T-dependent antibody responses in culture (1). We have outlined a three-stage mechanism to explain the capacity of DC to stimulate primary antibody responses to heterologous erythrocytes. First, DC induced T cells to produce and to become responsive to interleukin 2 (IL-2). This stage corresponded to the syngeneic mixed leukocyte reaction (2) and involved the clustering of DC and T cells into discrete aggregates. Isolated clusters, representing 5-10% of the culture, were critical for IL-2 release and the production of IL-2-responsive T blasts. In the second stage, IL-2 directly triggered the responsive T cells to release B cell helper factors. This role for IL-2 was documented with a rabbit anti-IL-2 reagent, purified IL-2, and T cells that had been rendered IL-2 responsive by an initial co-culture with DC. T cell growth was not required for IL-2-mediated helper factor release, since irradiated and untreated responders produced similar levels of factor and did so within 3 h of the addition of IL-2. In the final stage, helper factors stimulated the development of antibody-secreting cells from purified B lymphocytes. The helper factors were not H-2 restricted, but for both sheep and horse erythrocytes, the response to factors was antigen dependent and specific. The IL-2 that was present in the DC/T cell-conditioned medium did not act on B cells, since helper activity was neither neutralized nor absorbed by our anti-IL-2 reagent. We conclude that the ability of the DC to induce IL-2 release and responsiveness underlies its capacity to trigger both T and B lymphocyte reactions.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mahinbanu Mammadli ◽  
Weishan Huang ◽  
Rebecca Harris ◽  
Aisha Sultana ◽  
Ying Cheng ◽  
...  

Allogeneic hematopoietic stem cell transplantation is a potentially curative procedure for many malignant diseases. Donor T cells prevent disease recurrence via graft-versus-leukemia (GVL) effect. Donor T cells also contribute to graft-versus-host disease (GVHD), a debilitating and potentially fatal complication. Novel treatment strategies are needed which allow preservation of GVL effects without causing GVHD. Using murine models, we show that targeting IL-2-inducible T cell kinase (ITK) in donor T cells reduces GVHD while preserving GVL effects. Both CD8+ and CD4+ donor T cells from Itk-/- mice produce less inflammatory cytokines and show decrease migration to GVHD target organs such as the liver and small intestine, while maintaining GVL efficacy against primary B-cell acute lymphoblastic leukemia (B-ALL). Itk-/- T cells exhibit reduced expression of IRF4 and decreased JAK/STAT signaling activity but upregulating expression of Eomesodermin (Eomes) and preserve cytotoxicity, necessary for GVL effect. Transcriptome analysis indicates that ITK signaling controls chemokine receptor expression during alloactivation, which in turn affects the ability of donor T cells to migrate to GVHD target organs. Our data suggest that inhibiting ITK could be a therapeutic strategy to reduce GVHD while preserving the beneficial GVL effects following allo-HSCT treatment.


2021 ◽  
Vol 9 (4) ◽  
pp. e002051
Author(s):  
Ryan Michael Reyes ◽  
Yilun Deng ◽  
Deyi Zhang ◽  
Niannian Ji ◽  
Neelam Mukherjee ◽  
...  

BackgroundAnti-programmed death-ligand 1 (αPD-L1) immunotherapy is approved to treat bladder cancer (BC) but is effective in <30% of patients. Interleukin (IL)-2/αIL-2 complexes (IL-2c) that preferentially target IL-2 receptor β (CD122) augment CD8+ antitumor T cells known to improve αPD-L1 efficacy. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1.MethodsWe studied mechanisms of IL-2c and αPD-L1 efficacy using PD-L1+ mouse BC cell lines MB49 and MBT-2 in orthotopic (bladder) and metastatic (lung) sites.ResultsIL-2c reduced orthotopic tumor burden and extended survival in MB49 and MBT-2 BC models, similar to αPD-L1. Using antibody-mediated cell depletions and genetically T cell-deficient mice, we unexpectedly found that CD8+ T cells were not necessary for IL-2c efficacy against tumors in bladder, whereas γδ T cells, not reported to contribute to αPD-L1 efficacy, were indispensable for IL-2c efficacy there. αPD-L1 responsiveness in bladder required conventional T cells as expected, but not γδ T cells, altogether defining distinct mechanisms for IL-2c and αPD-L1 efficacy. γδ T cells did not improve IL-2c treatment of subcutaneously challenged BC or orthotopic (peritoneal) ovarian cancer, consistent with tissue-specific and/or tumor-specific γδ T cell contributions to IL-2c efficacy. IL-2c significantly altered bladder intratumoral γδ T cell content, activation status, and specific γδ T cell subsets with antitumor or protumor effector functions. Neither IL-2c nor αPD-L1 alone treated lung metastatic MB49 or MBT-2 BC, but their combination improved survival in both models. Combination treatment efficacy in lungs required CD8+ T cells but not γδ T cells.ConclusionsMechanistic insights into differential IL-2c and αPD-L1 treatment and tissue-dependent effects could help develop rational combination treatment strategies to improve treatment efficacy in distinct cancers. These studies also provide insights into γδ T cell contributions to immunotherapy in bladder and engagement of adaptive immunity by IL-2c plus αPD-L1 to treat refractory lung metastases.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sasan Ghaffari ◽  
Monireh Torabi-Rahvar ◽  
Sajjad Aghayan ◽  
Zahra Jabbarpour ◽  
Kobra Moradzadeh ◽  
...  

Abstract Background The successful ex vivo expansion of T-cells in great numbers is the cornerstone of adoptive cell therapy. We aimed to achieve the most optimal T-cell expansion condition by comparing the expansion of T-cells at various seeding densities, IL-2 concentrations, and bead-to-cell ratios. we first expanded the peripheral blood mononuclear cells (PBMCs) of a healthy donor at a range of 20 to 500 IU/mL IL-2 concentrations, 125 × 103 to 1.5 × 106 cell/mL, and 1:10 to 10:1 B:C (Bead-to-cell) ratios and compared the results. We then expanded the PBMC of three healthy donors using the optimized conditions and examined the growth kinetics. On day 28, CD3, CD4, and CD8 expression of the cell populations were analyzed by flow cytometry. Results T-cells of the first donor showed greater expansion results in IL-2 concentrations higher than 50 IU/mL compared to 20 IU/mL (P = 0.02). A seeding density of 250 × 103 cell/mL was superior to higher or lower densities in expanding T-cells (P = 0.025). Also, we witnessed a direct correlation between the B:C ratio and T-cell expansion, in which, in 5:1 and 10:1 B:C ratios T-cell significantly expanded more than lower B:C ratios. The results of PBMC expansions of three healthy donors were similar in growth kinetics. In the optimized condition, 96–98% of the lymphocyte population expressed CD3. While the majority of these cells expressed CD8, the mean expression of CD4 in the donors was 19.3, 16.5, and 20.4%. Conclusions Our methodology demonstrates an optimized culture condition for the production of large quantities of polyclonal T-cells, which could be useful for future clinical and research studies.


2005 ◽  
Vol 25 (6) ◽  
pp. 2227-2241 ◽  
Author(s):  
Souad Rahmouni ◽  
Torkel Vang ◽  
Andres Alonso ◽  
Scott Williams ◽  
Marianne van Stipdonk ◽  
...  

ABSTRACT The Csk tyrosine kinase negatively regulates the Src family kinases Lck and Fyn in T cells. Engagement of the T-cell antigen receptor results in a removal of Csk from the lipid raft-associated transmembrane protein PAG/Cbp. Instead, Csk becomes associated with an ∼72-kDa tyrosine-phosphorylated protein, which we identify here as G3BP, a phosphoprotein reported to bind the SH3 domain of Ras GTPase-activating protein. G3BP reduced the ability of Csk to phosphorylate Lck at Y505 by decreasing the amount of Csk in lipid rafts. As a consequence, G3BP augmented T-cell activation as measured by interleukin-2 gene activation. Conversely, elimination of endogenous G3BP by RNA interference increased Lck Y505 phosphorylation and reduced TCR signaling. In antigen-specific T cells, endogenous G3BP moved into a intracellular location adjacent to the immune synapse, but deeper inside the cell, upon antigen recognition. Csk colocalization with G3BP occurred in this “parasynaptic” location. We conclude that G3BP is a new player in T-cell-antigen receptor signaling and acts to reduce the amount of Csk in the immune synapse.


1993 ◽  
Vol 177 (6) ◽  
pp. 1791-1796 ◽  
Author(s):  
F A Harding ◽  
J P Allison

The activation requirements for the generation of CD8+ cytotoxic T cells (CTL) are poorly understood. Here we demonstrate that in the absence of exogenous help, a CD28-B7 interaction is necessary and sufficient for generation of class I major histocompatibility complex-specific CTL. Costimulation is required only during the inductive phase of the response, and not during the effector phase. Transfection of the CD28 counter receptor, B7, into nonstimulatory P815 cells confers the ability to elicit P815-specific CTL, and this response can be inhibited by anti-CD28 Fab or by the chimeric B7-binding protein CTLA4Ig. Anti-CD28 monoclonal antibody (mAb) can provide a costimulatory signal to CD8+ T cells when the costimulatory capacity of splenic stimulators is destroyed by chemical fixation. CD28-mediated signaling provokes the release of interleukin 2 (IL-2) from the CD8+ CTL precursors, as anti-CD28 mAb could be substituted for by the addition of IL-2, and an anti-IL-2 mAb can block the generation of anti-CD28-induced CTL. CD4+ cells are not involved in the costimulatory response in the systems examined. We conclude that CD8+ T cell activation requires two signals: an antigen-specific signal mediated by the T cell receptor, and an additional antigen nonspecific signal provided via a CD28-B7 interaction.


Sign in / Sign up

Export Citation Format

Share Document