scholarly journals Interleukin 12, interferon gamma, and tumor necrosis factor alpha are the key cytokines of the generalized Shwartzman reaction.

1994 ◽  
Vol 180 (3) ◽  
pp. 907-915 ◽  
Author(s):  
L Ozmen ◽  
M Pericin ◽  
J Hakimi ◽  
R A Chizzonite ◽  
M Wysocka ◽  
...  

The Shwartzman reaction is elicited by two injections of lipopolysaccharide (LPS) in mice. The priming LPS injection is given in the footpad, whereas the lethal LPS challenge is given intravenously 24 h later. The injection of interferon gamma (IFN-gamma) or interleukin 12 (IL-12) instead of the LPS priming injection induced the lethal reaction in mice further challenged with LPS. Antibodies against IFN-gamma when given together with the priming agent, prevented the lethal reaction in mice primed with either LPS, IL-12, or IFN-gamma. Antibodies against IL-12, when given together with the priming agent, prevented the lethal reaction in mice primed with either LPS or IL-12 but not with IFN-gamma. These results strongly suggest that LPS induces the release of IL-12, that IL-12 induces the production of IFN-gamma, and that IFN-gamma is the cytokine that primes macrophages and other cell types. Upon LPS challenge, the lethal Shwartzman reaction is induced by a massive production of inflammatory cytokines that act on the target sites already sensitized by IFN-gamma. If mixtures of TNF and IL-1 or mixtures of TNF and IFN-gamma are used to challenge mice previously primed with IFN-gamma or IL-12, mortality is induced. In the same conditions, the individual cytokines or a mixture of IL-1 and IFN-gamma do not replace the LPS challenge. When the mice are primed with LPS, the combination of TNF, IL-1, and IFN-gamma induced only a partial mortality incidence suggesting that the involvement of other LPS-induced factors.

1993 ◽  
Vol 178 (4) ◽  
pp. 1435-1440 ◽  
Author(s):  
R Kamijo ◽  
J Le ◽  
D Shapiro ◽  
E A Havell ◽  
S Huang ◽  
...  

Mice with a targeted disruption of the interferon gamma receptor gene (IFN-gamma R0/0 mice) and control wild-type mice were inoculated with the Bacillus Calmette-Guérin (BCG) strain of Mycobacterium bovis. BCG infection was not lethal for wild-type mice whereas all IFN-gamma R0/0 mice died approximately 7-9 wk after inoculation. Histological examination at 2 and 6 wk after BCG inoculation showed that livers of IFN-gamma R0/0 mice had higher numbers of acid-fast bacteria than wild-type mice, especially at 6 wk. In parallel, the livers of IFN-gamma R0/0 mice showed a reduction in the formation of characteristic granulomas at 2 wk after inoculation. Injection of lipopolysaccharide (LPS) 2 wk after BCG inoculation was significantly less lethal for IFN-gamma R0/0 mice than for wild-type mice. Reduced lethality of LPS correlated with a drastically reduced production of tumor necrosis factor alpha (TNF-alpha) in the IFN-gamma R0/0 mice. Interleukin 1 alpha (IL-1 alpha) and IL-6 levels in the serum were also significantly reduced in the IFN-gamma R0/0 mice after BCG infection and LPS challenge. The greatly reduced capacity of BCG-infected IFN-gamma R0/0 mice to produce TNF-alpha may be an important factor in their inability to resist BCG infection. These results show that the presence of a functional IFN-gamma receptor is essential for the recovery of mice from BCG infection, and that IFN-gamma is a key element in the complex process whereby BCG infection leads to the sensitization to endotoxin.


Blood ◽  
1991 ◽  
Vol 78 (12) ◽  
pp. 3254-3258
Author(s):  
A Mackensen ◽  
C Galanos ◽  
R Engelhardt

Intravenous (IV) administration of purified lipopolysaccharide (LPS) from Salmonella abortus equi to cancer patients induces the formation of high amounts of endogenous cytokines such as tumor necrosis factor- alpha (TNF-alpha) and interleukin-6 (IL-6). On repeated administration of LPS at 2-week intervals, a marked downregulation of the cytokine response was observed, especially between the first and the second challenge. This study sought to determine whether it would be possible to prevent this downregulation by pretreating patients with interferon- gamma (IFN-gamma), which is known to enhance cytokine production by monocytes and macrophages in vitro. Ten patients with disseminated cancer received a first injection of 4.0 ng LPS/kg. Thereafter, patients were divided into two groups. One group received two further LPS injections (4.0 ng/kg) at 2-week intervals. The second group was pretreated (-12 hours) with 50 micrograms IFN-gamma subcutaneously (SC) before the second and third LPS challenge. To prevent constitutional side effects such as fever and chills, patients received 1,600 mg ibuprofen orally before LPS injection. The results of the current study demonstrate that apart from TNF-alpha and IL-6, two other cytokines, interleukin-8 (IL-8) and granulocyte colony-stimulating factor (G-CSF) are produced in cancer patients in response to LPS. LPS application at 2-week intervals resulted in a transient attenuation of all cytokines (TNF-alpha, IL-6, IL-8, G-CSF) on the second challenge. In the case of TNF-alpha, IL-6, and G-CSF, pretreatment with IFN-gamma not only prevented the downregulation, but enhanced the production of these cytokines to levels higher than those obtained after the first LPS challenge. In contrast, the downregulation of IL-8 remained unaffected by IFN-gamma pretreatment. Further studies are warranted to determine whether the prevention of cytokine downregulation by IFN-gamma following repeated LPS injections is of clinical relevance in respect to the antitumor activity of LPS.


1995 ◽  
Vol 181 (5) ◽  
pp. 1615-1621 ◽  
Author(s):  
I E Flesch ◽  
J H Hess ◽  
S Huang ◽  
M Aguet ◽  
J Rothe ◽  
...  

Interleukin 12 (IL-12) produced by macrophages immediately after infection is considered essential for activation of a protective immune response against intracellular pathogens. In the murine Mycobacterium bovis Bacillus Calmette-Guérin (BCG) model we assessed whether early IL-12 production by macrophages depends on other cytokines. In vitro, murine bone marrow-derived macrophages produced IL-12 after infection with viable M. bovis BCG or stimulation with LPS, however, priming with recombinant interferon gamma (rIFN-gamma) was necessary. In addition, IL-12 production by these macrophages was blocked by specific anti-tumor necrosis factor alpha (TNF-alpha) antiserum. Macrophages from gene deletion mutant mice lacking either the IFN-gamma receptor or the TNF receptor 1 (p55) failed to produce IL-12 in vitro after stimulation with rIFN-gamma and mycobacterial infection. In vivo, IL-12 production was induced in spleens of immunocompetent mice early during M. bovis BCG infection but not in those of mutant mice lacking the receptors for IFN-gamma or TNF. Our results show that IL-12 production by macrophages in response to mycobacterial infection depends on IFN-gamma and TNF. Hence, IL-12 is not the first cytokine produced in mycobacterial infections.


Blood ◽  
1991 ◽  
Vol 78 (12) ◽  
pp. 3254-3258 ◽  
Author(s):  
A Mackensen ◽  
C Galanos ◽  
R Engelhardt

Abstract Intravenous (IV) administration of purified lipopolysaccharide (LPS) from Salmonella abortus equi to cancer patients induces the formation of high amounts of endogenous cytokines such as tumor necrosis factor- alpha (TNF-alpha) and interleukin-6 (IL-6). On repeated administration of LPS at 2-week intervals, a marked downregulation of the cytokine response was observed, especially between the first and the second challenge. This study sought to determine whether it would be possible to prevent this downregulation by pretreating patients with interferon- gamma (IFN-gamma), which is known to enhance cytokine production by monocytes and macrophages in vitro. Ten patients with disseminated cancer received a first injection of 4.0 ng LPS/kg. Thereafter, patients were divided into two groups. One group received two further LPS injections (4.0 ng/kg) at 2-week intervals. The second group was pretreated (-12 hours) with 50 micrograms IFN-gamma subcutaneously (SC) before the second and third LPS challenge. To prevent constitutional side effects such as fever and chills, patients received 1,600 mg ibuprofen orally before LPS injection. The results of the current study demonstrate that apart from TNF-alpha and IL-6, two other cytokines, interleukin-8 (IL-8) and granulocyte colony-stimulating factor (G-CSF) are produced in cancer patients in response to LPS. LPS application at 2-week intervals resulted in a transient attenuation of all cytokines (TNF-alpha, IL-6, IL-8, G-CSF) on the second challenge. In the case of TNF-alpha, IL-6, and G-CSF, pretreatment with IFN-gamma not only prevented the downregulation, but enhanced the production of these cytokines to levels higher than those obtained after the first LPS challenge. In contrast, the downregulation of IL-8 remained unaffected by IFN-gamma pretreatment. Further studies are warranted to determine whether the prevention of cytokine downregulation by IFN-gamma following repeated LPS injections is of clinical relevance in respect to the antitumor activity of LPS.


1996 ◽  
Vol 183 (4) ◽  
pp. 1447-1459 ◽  
Author(s):  
F P Huang ◽  
G J Feng ◽  
G Lindop ◽  
D I Stott ◽  
F Y Liew

MRL/MP-lpr/lpr (MRL/lpr) mice develop a spontaneous autoimmune disease. Serum from these mice contained significantly higher concentrations of nitrite/nitrate than serum from age-matched control MRL/MP-+/+ (MRL/+), BALB/c or CBA/6J mice. Spleen and peritoneal cells from MRL/lpr mice also produced significantly more nitric oxide (NO) than those from the control mice when cultured with interferon (IFN) gamma and lipopolysaccharide (LPS) in vitro. It is interesting to note that peritoneal cells from MRL/lpr mice also produced markedly higher concentrations of interleukin (IL) 12 than those from MRL/+ or BALB/c mice when cultured with same stimuli. It is striking that cells from MRL/lpr mice produced high concentrations of NO when cultured cells from MRL/+ or BALB/c mice. The enhanced NO synthesis induced by IFN-gamma/LPS was substantially inhibited by anti-IL-12 antibody. In addition, IL-12-induced NO production can also be markedly inhibited by anti-IFN-gamma antibody, but only weakly inhibited by anti-tumor necrosis factor alpha antibody. The effect of IL-12 on NO production was dependent on the presence of natural killer and possibly T cells. Serum from MRL/lpr mice contained significantly higher concentrations of IL-12 compared with those of MRL/+ or BALB/c control mice. Daily injection of recombinant IL-12 led to increased serum levels of IFN-gamma and NO metabolites, and accelerated glomerulonephritis in the young MRL/lpr mice (but not in the MRL/+ mice) compared with controls injected with phosphate-buffered saline alone. These data, together with previous finding that NO synthase inhibitors can ameliorate autoimmune disease in MRL/lpr mice, suggest that high capacity of such mice to produce IL-12 and their greater responsiveness to IL-12, leading to the production of high concentrations of NO, are important factors in this spontaneous model of autoimmune disease.


1994 ◽  
Vol 179 (4) ◽  
pp. 1273-1283 ◽  
Author(s):  
R Manetti ◽  
F Gerosa ◽  
M G Giudizi ◽  
R Biagiotti ◽  
P Parronchi ◽  
...  

Interleukin 12 (IL-12) facilitates the generation of a T helper type 1 (Th1) response, with high interferon gamma (IFN-gamma) production, while inhibiting the generation of IL-4-producing Th2 cells in polyclonal cultures of both human and murine T cells and in vivo in the mouse. In this study, we analyzed the effect of IL-12, present during cloning of human T cells, on the cytokine profile of the clones. The culture system used allows growth of clones from virtually every T cell, and thus excludes the possibility that selection of precommitted Th cell precursors plays a role in determining characteristics of the clones. IL-12 present during the cloning procedures endowed both CD4+ and CD8+ clones with the ability to produce IFN-gamma at levels severalfold higher than those observed in clones generated in the absence of IL-12. This priming was stable because the high levels of IFN-gamma production were maintained when the clones were cultured in the absence of IL-12 for 11 d. The CD4+ and some of the CD8+ clones produced variable amounts of IL-4. Unlike IFN-gamma, IL-4 production was not significantly different in clones generated in the presence or absence of IL-12. These data suggest that IL-12 primes the clone progenitors, inducing their differentiation to high IFN-gamma-producing clones. The suppression of IL-4-producing cells observed in polyclonally generated T cells in vivo and in vitro in the presence of IL-12 is not observed in this clonal model, suggesting that the suppression depends more on positive selection of non-IL-4-producing cells than on differentiation of individual clones. However, antigen-specific established Th2 clones that were unable to produce IFN-gamma with any other inducer did produce IFN-gamma at low but significant levels when stimulated with IL-12 in combination with specific antigen or insoluble anti-CD3 antibodies. This induction of IFN-gamma gene expression was transient, because culture of the established clones with IL-12 for up to 1 wk did not convert them into IFN-gamma producers when stimulated in the absence of IL-12. These results suggest that Th clones respond to IL-12 treatment either with a stable priming for IFN-gamma production or with only a transient low level expression of the IFN-gamma gene, depending on their stage of differentiation.


1994 ◽  
Vol 267 (5) ◽  
pp. C1398-C1404 ◽  
Author(s):  
F. Besancon ◽  
G. Przewlocki ◽  
I. Baro ◽  
A. S. Hongre ◽  
D. Escande ◽  
...  

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in defective transepithelial Cl- transport. The regulation of CF gene expression is not fully understood. We report that interferon-gamma (IFN-gamma), but not IFN-alpha or -beta, downregulates CFTR mRNA levels in two colon-derived epithelial cell lines, HT-29 and T84, in a time- and concentration (from 0.1 IU/ml)-dependent manner. IFN-gamma has no effect on the transcription rate of the CFTR gene but reduces CFTR mRNA half-life, indicating that it exerts a posttranscriptional regulation of CFTR expression, at least partly, through destabilization of the transcripts. Cells treated with IFN-gamma contain subnormal amounts of 165-kDa CFTR protein. Assays of adenosine 3',5'-cyclic monophosphate-stimulated 36Cl- efflux and whole cell currents show that CFTR function is diminished in IFN-gamma-treated cells. IFN-gamma and tumor necrosis factor-alpha synergistically reduce CFTR gene expression. Our results suggest that production of these cytokines in response to bacterial infections and inflammatory disorders may alter transmembrane Cl- transport.


2008 ◽  
Vol 15 (10) ◽  
pp. 1580-1589 ◽  
Author(s):  
Mouhannad Sadek ◽  
Feng Yun Yue ◽  
Erika Yue Lee ◽  
Gabor Gyenes ◽  
R. Brad Jones ◽  
...  

ABSTRACT Members of the Mycobacterium avium complex (MAC) may cause chronic pulmonary infections in otherwise healthy elderly persons but rarely invade parts of the body outside of the lungs in immunocompetent hosts. We present a case of an isolated intracranial MAC infection in an apparently immunocompetent individual and review previous reports. We studied the T-cell and monocyte responses in healthy volunteers, individuals with a pulmonary MAC infection, and one individual with an isolated intracranial MAC infection. Genomic DNA from the individual with the brain MAC infection was studied for gamma interferon (IFN-γ) receptor mutations. Individuals with localized pulmonary MAC infections showed increased activation of monocytes and enhanced monocyte and T-cell tumor necrosis factor alpha (TNF-α) production in response to lipopolysaccharide and MAC antigens but defects in T-cell IFN-γ secretion. The individual with an intracranial MAC infection showed a lack of monocyte activation and deficiencies in both monocyte and T-cell TNF-α production and monocyte interleukin-12 (IL-12) production but had preserved T-cell IFN-γ production. Mutations or deletions in the IFN-γ receptor were not detected in the individual with the intracranial MAC infection. Our data suggest that distinct immune defects characterize two different manifestations of MAC infection. A relative defect in IFN-γ production in response to MAC may predispose an individual to localized but partially controlled lung disease, whereas defects leading to reduced IL-12 and TNF-α production may allow the dissemination of MAC. Further studies delineating the potential role of TNF-α in limiting the spread of MAC outside the lung are warranted.


2000 ◽  
Vol 74 (7) ◽  
pp. 3366-3378 ◽  
Author(s):  
Kate D. Ryman ◽  
William B. Klimstra ◽  
Khuong B. Nguyen ◽  
Christine A. Biron ◽  
Robert E. Johnston

ABSTRACT Infection of adult 129 Sv/Ev mice with consensus Sindbis virus strain TR339 is subclinical due to an inherent restriction in early virus replication and viremic dissemination. By comparing the pathogenesis of TR339 in 129 Sv/Ev mice and alpha/beta interferon receptor null (IFN-α/βR−/−) mice, we have assessed the contribution of IFN-α/β in restricting virus replication and spread and in determining cell and tissue tropism. In adult 129 Sv/Ev mice, subcutaneous inoculation with 100 PFU of TR339 led to extremely low-level virus replication and viremia, with clearance under way by 96 h postinoculation (p.i.). In striking contrast, adult IFN-α/βR−/− mice inoculated subcutaneously with 100 PFU of TR339 succumbed to the infection within 84 h. By 24 h p.i. a high-titer serum viremia had seeded infectious virus systemically, coincident with the systemic induction of the proinflammatory cytokines interleukin-12 (IL-12) p40, IFN-γ, tumor necrosis factor alpha, and IL-6. Replicating virus was located in macrophage-dendritic cell (DC)-like cells at 24 h p.i. in the draining lymph node and in the splenic marginal zone. By 72 h p.i. virus replication was widespread in macrophage-DC-like cells in the spleen, liver, lung, thymus, and kidney and in fibroblast-connective tissue and periosteum, with sporadic neuroinvasion. IFN-α/β-mediated restriction of TR339 infection was mimicked in vitro in peritoneal exudate cells from 129 Sv/Ev versus IFN-α/βR−/− mice. Thus, IFN-α/β protects the normal adult host from viral infection by rapidly conferring an antiviral state on otherwise permissive cell types, both locally and systemically. Ablation of the IFN-α/β system alters the apparent cell and tissue tropism of the virus and renders macrophage-DC-lineage cells permissive to infection.


Sign in / Sign up

Export Citation Format

Share Document