scholarly journals The Ets protein Spi-B is expressed exclusively in B cells and T cells during development.

1996 ◽  
Vol 184 (1) ◽  
pp. 203-214 ◽  
Author(s):  
G H Su ◽  
H S Ip ◽  
B S Cobb ◽  
M M Lu ◽  
H M Chen ◽  
...  

Spi-B and PU.1 are hematopoietic-specific transcription factors that constitute a subfamily of the Ets family of DNA-binding proteins. Here we show that contrary to previous reports, PU.1 and Spi-B have very different expression patterns. PU.1 is expressed at high levels in B cells, mast cells, megakaryocytes, macrophages, neutrophils, and immature erythroid cells and at lower levels in mature erythrocytes. PU.1 is completely absent from peripheral T cells and most T cell lines based on sensitive RT-PCR assays. In contrast, Spi-B is expressed exclusively in lymphoid cells and can be detected in early fetal thymus and spleen. In situ hybridizations of adult murine tissues demonstrate Spi-B mRNA in the medulla of the thymus, the white pulp of the spleen, and the germinal centers of lymph nodes. Spi-B expression is very abundant in B cells and both Spi-B mRNA and protein are detected in some T cells. In situ hybridization and Northern blot analysis suggest that Spi-B gene expression increases during B cell maturation and decreases during T cell maturation. Gel-retardation experiments show that Spi-B can bind to all putative PU.1 binding sites, but do not reveal any preferred Spi-B binding site. Finally, both PU.1 and Spi-B function as transcriptional activators of the immunoglobulin light-chain enhancer E lambda 2.4 when coexpressed with Pip (PU.1-interaction partner) in NIH-3T3 cells. Taken together, these data suggest that differences in patterns of expression between Spi-B and PU.1 distinguish the function of each protein during development of the immune system.

Blood ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 1708-1715 ◽  
Author(s):  
Maryalice Stetler-Stevenson ◽  
Adnan Mansoor ◽  
Megan Lim ◽  
Paula Fukushima ◽  
John Kehrl ◽  
...  

We have studied the expression of gelatinase A, gelatinase B, interstitial collagenase, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 in reactive lymphoid cells, as well as in a series of cell lines derived from neoplasms of B- and T-cell lineage. Using both Northern blot analysis and zymography, gelatinase B activity was detected by zymography in two Burkitt cell lines and in a tonsillar cell suspension, while gelatinase A and interstitial collagenase activities were not detected by either method. TIMP-1 expression was demonstrated by Northern blot analysis in the multipotential neoplastic K-562 cell line, the high grade Burkitt's B-cell lymphoma lines, isolated tonsillar B cells and at low levels in peripheral blood T cells, but was not expressed in any of the neoplastic T-cell lines or isolated peripheral blood B cells. In contrast, TIMP-2 expression was restricted to tissues containing cells of T-cell lineage with high levels being observed in the neoplastic T-cell lines and lower levels in normal peripheral blood T cells and hyperplastic tonsil. Expression of TIMP-1 and TIMP-2 was confirmed at the protein level by reverse zymography and immunofluorescence assays using antihuman TIMP polyclonal antibodies. Expression of gelatinase B by the high grade B-cell Burkitt's lymphoma cell lines is consistent with previous findings in large cell immunoblastic lymphomas and indicates that this enzyme may play an important role in high grade non-Hodgkin's lymphomas. TIMP expression correlated with cell lineage in that TIMP-1 was primarily observed in B cells and TIMP-2 was restricted to T cells.


Blood ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 1708-1715 ◽  
Author(s):  
Maryalice Stetler-Stevenson ◽  
Adnan Mansoor ◽  
Megan Lim ◽  
Paula Fukushima ◽  
John Kehrl ◽  
...  

Abstract We have studied the expression of gelatinase A, gelatinase B, interstitial collagenase, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 in reactive lymphoid cells, as well as in a series of cell lines derived from neoplasms of B- and T-cell lineage. Using both Northern blot analysis and zymography, gelatinase B activity was detected by zymography in two Burkitt cell lines and in a tonsillar cell suspension, while gelatinase A and interstitial collagenase activities were not detected by either method. TIMP-1 expression was demonstrated by Northern blot analysis in the multipotential neoplastic K-562 cell line, the high grade Burkitt's B-cell lymphoma lines, isolated tonsillar B cells and at low levels in peripheral blood T cells, but was not expressed in any of the neoplastic T-cell lines or isolated peripheral blood B cells. In contrast, TIMP-2 expression was restricted to tissues containing cells of T-cell lineage with high levels being observed in the neoplastic T-cell lines and lower levels in normal peripheral blood T cells and hyperplastic tonsil. Expression of TIMP-1 and TIMP-2 was confirmed at the protein level by reverse zymography and immunofluorescence assays using antihuman TIMP polyclonal antibodies. Expression of gelatinase B by the high grade B-cell Burkitt's lymphoma cell lines is consistent with previous findings in large cell immunoblastic lymphomas and indicates that this enzyme may play an important role in high grade non-Hodgkin's lymphomas. TIMP expression correlated with cell lineage in that TIMP-1 was primarily observed in B cells and TIMP-2 was restricted to T cells.


2005 ◽  
Vol 12 (3) ◽  
pp. 203-209 ◽  
Author(s):  
Mathilda Mandel ◽  
Michael Gurevich ◽  
Gad Lavie ◽  
Irun R. Cohen ◽  
Anat Achiron

Multiple sclerosis (MS) is an autoimmune disease where T-cells activated against myelin antigens are involved in myelin destruction. Yet, healthy subjects also harbor T-cells responsive to myelin antigens, suggesting that MS patient-derived autoimmune T-cells might bear functional differences from T-cells derived from healthy individuals. We addressed this issue by analyzing gene expression patterns of myelin oligodendrocytic glycoprotein (MOG) responsive T-cell lines generated from MS patients and healthy subjects. We identified 150 transcripts that were differentially expressed between MS patients and healthy controls. The most informative 43 genes exhibited >1.5-fold change in expression level. Eighteen genes were up-regulated including BCL2, lifeguard, IGFBP3 and VEGF. Twenty five genes were down-regulated, including apoptotic activators like TNF and heat shock protein genes. This gene expression pattern was unique to MOG specific T-cell lines and was not expressed in T-cell lines reactive to tetanus toxin (TTX). Our results indicate that activation in MS that promotes T-cell survival and expansion, has its own state and that the unique gene expression pattern that characterize autoreactive T-cells in MS represent a constellation of factors in which the chronicity, timing and accumulation of damage make the difference between health and disease.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Tomohiro Aoki ◽  
Lauren C. Chong ◽  
Katsuyoshi Takata ◽  
Katy Milne ◽  
Elizabeth Chavez ◽  
...  

Introduction: Classic Hodgkin lymphoma (CHL) features a unique crosstalk between malignant cells and different types of normal immune cells in the tumor-microenvironment (TME). On the basis of histomorphologic and immunophenotypic features of the malignant Hodgkin and Reed-Sternberg (HRS) cells and infiltrating immune cells, four histological subtypes of CHL are recognized: Nodular sclerosing (NS), Mixed cellularity, Lymphocyte-rich (LR) and Lymphocyte-depleted CHL. Recently, our group described the high abundance of various types of immunosuppressive CD4+ T cells including LAG3+ and/or CTLA4+ cells in the TME of CHL using single cell RNA sequencing (scRNAseq). However, the TME of LR-CHL has not been well characterized due to the rarity of the disease. In this study, we aimed at characterizing the immune cell profile of LR-CHL at single cell resolution. METHODS: We performed scRNAseq on cell suspensions collected from lymph nodes of 28 primary CHL patients, including 11 NS, 9 MC and 8 LR samples, with 5 reactive lymph nodes (RLN) serving as normal controls. We merged the expression data from all cells (CHL and RLN) and performed batch correction and normalization. We also performed single- and multi-color immunohistochemistry (IHC) on tissue microarray (TMA) slides from the same patients. In addition, an independent validation cohort of 31 pre-treatment LR-CHL samples assembled on a TMA, were also evaluated by IHC. Results: A total of 23 phenotypic cell clusters were identified using unsupervised clustering (PhenoGraph). We assigned each cluster to a cell type based on the expression of genes described in published transcriptome data of sorted immune cells and known canonical markers. While most immune cell phenotypes were present in all pathological subtypes, we observed a lower abundance of regulatory T cells (Tregs) in LR-CHL in comparison to the other CHL subtypes. Conversely, we found that B cells were enriched in LR-CHL when compared to the other subtypes and specifically, all four naïve B-cell clusters were quantitatively dominated by cells derived from the LR-CHL samples. T follicular helper (TFH) cells support antibody response and differentiation of B cells. Our data show the preferential enrichment of TFH in LR-CHL as compared to other CHL subtypes, but TFH cells were still less frequent compared to RLN. Of note, Chemokine C-X-C motif ligand 13 (CXCL13) was identified as the most up-regulated gene in LR compared to RLN. CXCL13, which is a ligand of C-X-C motif receptor 5 (CXCR5) is well known as a B-cell attractant via the CXCR5-CXCL13 axis. Analyzing co-expression patterns on the single cell level revealed that the majority of CXCL13+ T cells co-expressed PD-1 and ICOS, which is known as a universal TFH marker, but co-expression of CXCR5, another common TFH marker, was variable. Notably, classical TFH cells co-expressing CXCR5 and PD-1 were significantly enriched in RLN, whereas PD-1+ CXCL13+ CXCR5- CD4+ T cells were significantly enriched in LR-CHL. These co-expression patterns were validated using flow cytometry. Moreover, the expression of CXCR5 on naïve B cells in the TME was increased in LR-CHL compared to the other CHL subtypes We next sought to understand the spatial relationship between CXCL13+ T cells and malignant HRS cells. IHC of all cases revealed that CXCL13+ T cells were significantly enriched in the LR-CHL TME compared to other subtypes of CHL, and 46% of the LR-CHL cases showed CXCL13+ T cell rosettes closely surrounding HRS cells. Since PD-1+ T cell rosettes are known as a specific feature of LR-CHL, we confirmed co-expression of PD-1 in the rosetting cells by IHC in these cases. Conclusions: Our results reveal a unique TME composition in LR-CHL. LR-CHL seems to be distinctly characterized among the CHL subtypes by enrichment of CXCR5+ naïve B cells and CD4+ CXCL13+ PD-1+ T cells, indicating the importance of the CXCR5-CXCL13 axis in the pathogenesis of LR-CHL. Figure Disclosures Savage: BeiGene: Other: Steering Committee; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie: Honoraria; Roche (institutional): Research Funding; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie, Servier: Consultancy. Scott:Janssen: Consultancy, Research Funding; Celgene: Consultancy; NanoString: Patents & Royalties: Named inventor on a patent licensed to NanoString, Research Funding; NIH: Consultancy, Other: Co-inventor on a patent related to the MCL35 assay filed at the National Institutes of Health, United States of America.; Roche/Genentech: Research Funding; Abbvie: Consultancy; AstraZeneca: Consultancy. Steidl:AbbVie: Consultancy; Roche: Consultancy; Curis Inc: Consultancy; Juno Therapeutics: Consultancy; Bayer: Consultancy; Seattle Genetics: Consultancy; Bristol-Myers Squibb: Research Funding.


1995 ◽  
Vol 181 (4) ◽  
pp. 1399-1409 ◽  
Author(s):  
S K Bhatia ◽  
L T Tygrett ◽  
K H Grabstein ◽  
T J Waldschmidt

A number of previous studies have suggested a key role for interleukin 7 (IL-7) in the maturation of T lymphocytes. To better assess the function of IL-7 in lymphopoiesis, we have deprived mice of IL-7 in vivo by long-term administration of a neutralizing anti-IL-7 antibody. In a previous report (Grabstein, K. H., T. J. Waldschmidt, F. D. Finkelman, B. W. Hess, A. R. Alpert, N. E. Boiani, A. E. Namen, and P. J. Morrissey. 1993. J. Exp. Med. 178:257-264), we used this system to demonstrate the critical role of IL-7 in B cell maturation. After a brief period of anti-IL-7 treatment, most of the pro-B cells and all of the pre-B and immature B cells were depleted from the bone marrow. In the present report, we have injected anti-IL-7 antibody for periods of up to 12 wk to determine the effect of in vivo IL-7 deprivation on the thymus. The results demonstrate a > 99% reduction in thymic cellularity after extended periods of antibody administration. Examination of thymic CD4- and CD8- defined subsets revealed that, on a proportional basis, the CD4+, CD8+ subset was most depleted, the CD4 and CD8 single positive cells remained essentially unchanged, and the CD4-, CD8- compartment actually increased to approximately 50% of the thymus. Further examination of the double negative thymocytes demonstrated that IL-7 deprivation did, indeed, deplete the CD3-, CD4-, CD8- precursors, with expansion of this subset being interupted at the CD44+, CD25+ stage. The proportional increase in the CD4-, CD8- compartment was found to be due to an accumulation of CD3+, T cell receptor alpha, beta + double negative T cells. Additional analysis revealed that anti-IL-7 treatment suppressed the audition/selection process of T cells, as shown by a significant reduction of single positive cells expressing CD69 and heat stable antigen. Finally, the effects of IL-7 deprivation on the thymus were found to be reversible, with a normal pattern of thymic subsets returning 4 wk after cessation of treatment. The present results thus indicate a central role for IL-7 in the maturation of thymic-derived T cells.


1988 ◽  
Vol 167 (6) ◽  
pp. 2011-2016 ◽  
Author(s):  
R Baer ◽  
A Forster ◽  
I Lavenir ◽  
T H Rabbitts

We previously detected mRNAs in a number of human T cell lines with a probe from within the Ig VH gene locus. We now show these mRNAs consist of Ig VH genes expressed in T cells. In one human T cell line, two RNA species have been studied and found to come from transcripts of unrearranged VH segments in which the leader exon, normally associated with VH transcripts in B cells, is replaced by a novel 5' exon (ET) not encoding a hydrophobic leader peptide. In genomic DNA, this new ET exon is adjacent to a pseudo-VH gene that has not been observed in mature mRNA. This implies that RNA splicing controls association of the new exon with the expressed VH segments. Hence, VH transcription does indeed occur in T cells, but is qualitatively different from that in B cells.


1983 ◽  
Vol 158 (6) ◽  
pp. 2024-2039 ◽  
Author(s):  
M Howard ◽  
L Matis ◽  
T R Malek ◽  
E Shevach ◽  
W Kell ◽  
...  

Antigen-activated T lymphocytes produce within 24 h of stimulation a factor that is indistinguishable biochemically and functionally from the B cell co-stimulating growth factor, BCGF-I, originally identified in induced EL4 supernatants: Supernatants from antigen-stimulated T cell lines are not directly mitogenic for resting B cells, but synergize in an H-2-unrestricted manner with anti-Ig activated B cells to produce polyclonal proliferation but not antibody-forming-cell development; biochemical studies reveal the B cell co-stimulating factor present in antigen-stimulated T cell line supernatants is identical by phenyl Sepharose chromatography and isoelectric focusing (IEF) to EL4 supernatant BCGF-I. We thus conclude that normal T cells produce BCGF-I in response to antigenic stimulation. Analysis of the mechanism of BCGF-I production by antigen-stimulated T cells showed that optimum amounts of BCGF-I were obtained as quickly as 24 h post-stimulation, and that the factor producing cells in the T cell line investigated bore the Lyt-1+2- phenotype. As few as 10(4) T cells produced sufficient BCGF-I to support the proliferation of 5 X 10(4) purified anti-Ig activated B cells. Finally, the activation of normal T cell lines to produce BCGF-I required either antigen presented in the context of syngeneic antigen-presenting cells (APC) or interleukin 2 (IL-2).


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1482-1482
Author(s):  
Seung-Tae Lee ◽  
Yun Fang Jiang ◽  
Soung-Chul Cha ◽  
Hong Qin ◽  
Larry W. Kwak ◽  
...  

Abstract Advanced stage follicular lymphoma remains an incurable disease with a median survival of 8 to 10 years that has not significantly changed over the last four decades. Therefore, novel treatment options are necessary to improve the clinical outcome in these patients. The observation of spontaneous regressions in a small percentage of patients suggested that augmenting the host immune response could potentially control this malignancy. Strategies using active specific immunotherapy with idiotype vaccines led to induction of clinical and molecular responses in a few patients but have met with only limited success possibly due to the low frequency of antigen-specific T cells induced in the patients. In contrast to active immunization, T cells of a given specificity and function may be selected and expanded in vitro to the desired number for adoptive cell transfer. Towards this goal, we stimulated tumor infiltrating lymphocytes (TILs) or peripheral blood mononuclear cells (PBMCs) from five follicular lymphoma patients with CD40 ligand-activated autologous tumor cells at approximately ten-day intervals in the presence of IL-2 and IL-15. After four rounds of stimulations, T cell lines generated from 3/5 patients recognized autologous unmodified tumor cells by producing significant amounts of TNF-α, GM-CSF and/or IFN-γ. By phenotypic analysis, the T cell lines were predominantly CD4+ T cells (> 70%), and intracellular cytokine assay showed that up to 40% of the CD4+ T cells were tumor-reactive. The inhibition of cytokine production by anti-HLA class II but not class I blocking antibodies confirmed that the CD4+ T cells were tumor-reactive. Further characterization revealed that the T cells from one patient recognized autologous tumor but not autologous normal B cells suggesting that they were tumor-specific. While in a second patient CD4+ T cell clones generated from the T cell line by limiting dilution recognized autologous tumor and autologous normal B cells but not autologous monocytes suggesting that they were B cell lineage-specific. We conclude that follicular lymphoma-specific T cells exist and can be efficiently expanded in vitro from both TILs and PBMCs using CD40 ligand-activated autologous tumor cells for adoptive T cell therapy. Additionally, identification of antigens recognized by these T cells could lead to development of novel immunotherapeutic strategies for lymphomas.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2018-2018
Author(s):  
Rui-kun Zhong ◽  
Thomas A. Lane ◽  
Edward D. Ball

Naturally occurring cytotoxic T cells directed against various leukemia associated antigens (LAA) expressed by acute myeloid leukemia (AML) cells have been described. However, these LAA-specific T cells are rare and obviously unable to initiate effective anti-leukemia responses. The challenge is how to investigate, select, activate and expand the rare LAA-specific T cells from the vast population of blood cells in patients with AML for immunotherapy. Based on our studies of inducing AML dendritic cell (AMLDC) differentiation and priming in situ AML-reactive T cells, we have developed a novel method of generating multiple autologous AML reactive T cell lines by limiting dilution AMLDC (LD-AMLDC) culture. The principle of LD-AMLDC is based on the assumption that autologous AML-reactive T cells or precursors are randomly distributed in the AML PBMC suspension, and that each one has an equal opportunity to respond to AML cells in the 96-well plates under optimized culture condition. By culturing AML PBMC (>90% blasts) in culture medium supplemented with GM-CSF/IL4/IL2/IL7/IL12 to induce AML DC differentiation and activate in situ autologous T cells, highly reactive anti-AML T cell lines (both CD4+ and CD8+ lines) were selected and expanded from LD-AMLDC culture using the appropriate numbers of AML PBMC in each culture well by the criterion of release of IFN-gamma in response to autologous AML blasts. By maximum likelihood solution, the estimated average frequency of AML reactive T cells or precursors is 6±3/1,000,000 AML PBMC (n=8). Strong intracellular IFN-gamma release of T cell lines obtained in LD-AMLDC was demonstrated by flow cytometry analysis after stimulation by autologous AML cells but not autologous B-lymphoblastoid cell line (LCL) (Figure). Effective specific lysis (up to 70% at E:T=20:1) of autologous AML cells but not autologous LCL or allogeneic AML cells by these T cell lines was observed. Two PR1 specific T cell lines were obtained by screening 39 AML reactive HLA-A2+ CD8+ T cell lines generated from 5 LD-AMLDC cultures, suggesting that other unidentified CD4 or CD8 lines with strong autologous AML responses may be reactive to known or unknown LAAs. These results encourage continued efforts to induce, activate and select T cells lines with high autologous AML reactivity using LD-AMLDC culture and to expand multi-LAA reactive T cell lines acquired from limiting dilution AML-DC culture for AML immunotherapy. Figure Figure


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 76-76
Author(s):  
Young Kwang Chae ◽  
William Han Bae ◽  
Yeonjoo Choi ◽  
Young Suk Kim ◽  
Jonathan Forrest Anker ◽  
...  

76 Background: Compared to recent advances in our knowledge of T cell biology with success of immunotherapy, little progress has been made in understanding of the effects of B cells in tumor microenvironment and their interactions with T cells. Preclinical studies reported that B cells may have immune suppressive roles in tumor microenvironment via induction of T cell exhaustion. However, this association has not been shown in human tissues. We explored the landscape of tumor infiltrating B and T cells and their association with tumor microenvironment in various human cancers for which the FDA approved the use of immune checkpoint inhibitors. Methods: Expression patterns for 812 immune related genes from the TCGA database were utilized to define tumor infiltrating cells in 2951 patients with bladder urothelial carcinoma, renal clear cell carcinoma, skin cutaneous melanoma, lung squamous cell carcinoma, lung adenocarcinoma, and head and neck squamous cell carcinoma. Odds ratios (ORs) of the numbers of tumors with versus without activated B cell infiltration by the presence of activated CD8T cell infiltration were calculated. Results: Immune landscape of the six human cancers showed a consistent inverse association between tumor infiltrating activated B and CD8 T cells (OR = 0.18, p < 0.001). B cell infiltration was associated with increased expressions of immune checkpoints PD-L1, PD-1 and CTLA-4 and regulatory cytokines TGF-β, IL-10 and IL-35, which are known to be secreted by regulatory B cells. Angiogenic markers, such as angiopoietins, VEGF, MMP-9, CXCL10, CXCL11 and Tie2, showed differential expression patterns between B cell high and low groups. Conclusions: This is the first study that reports the inverse association between tumor infiltrating B and CD8 T cells in human tissues. The strong associations between B cell infiltration and increased expressions of suppressive cytokines and immune checkpoints suggest regulatory B cells may play a role in the T cell suppression in tumor microenvironment. Our results implicate that depleting B cells, leading to possible disinhibition of T cell activation, may be a future therapeutic option in potentiating T cell mediated immunity.


Sign in / Sign up

Export Citation Format

Share Document