scholarly journals Immune Escape of Tumors in Vivo by Expression of Cellular Flice-Inhibitory Protein

1999 ◽  
Vol 190 (7) ◽  
pp. 1033-1038 ◽  
Author(s):  
Jan Paul Medema ◽  
Joan de Jong ◽  
Thorbald van Hall ◽  
Cornelis J.M. Melief ◽  
Rienk Offringa

The antiapoptotic protein cellular FLICE (Fas-associated death domain–like IL-1β–converting enzyme) inhibitory protein (cFLIP) protects cells from CD95(APO-1/Fas)-induced apoptosis in vitro and was found to be overexpressed in human melanomas. However, cytotoxic T cell–induced apoptosis, which is critically involved in tumor control in vivo, is not inhibited by cFLIP in vitro, as only CD95- and not perforin-dependent lysis is affected. This calls into question whether cFLIP is sufficient to allow escape from T cell–dependent immunity. Using two murine tumors, we directly demonstrate that cFLIP does result in escape from T cell immunity in vivo. Moreover, tumor cells are selected in vivo for elevated cFLIP expression. Therefore, our data indicate that CD95-dependent apoptosis constitutes a more prominent mechanism for tumor clearance than has so far been anticipated and that blockade of this pathway can result in tumor escape even when the perforin pathway is operational.

2005 ◽  
Vol 201 (4) ◽  
pp. 567-577 ◽  
Author(s):  
Jianuo Liu ◽  
Takashi Miwa ◽  
Brendan Hilliard ◽  
Youhai Chen ◽  
John D. Lambris ◽  
...  

Decay-accelerating factor ([DAF] CD55) is a glycosylphosphatidylinositol-anchored membrane inhibitor of complement with broad clinical relevance. Here, we establish an additional and unexpected role for DAF in the suppression of adaptive immune responses in vivo. In both C57BL/6 and BALB/c mice, deficiency of the Daf1 gene, which encodes the murine homologue of human DAF, significantly enhanced T cell responses to active immunization. This phenotype was characterized by hypersecretion of interferon (IFN)-γ and interleukin (IL)-2, as well as down-regulation of the inhibitory cytokine IL-10 during antigen restimulation of lymphocytes in vitro. Compared with wild-type mice, Daf1−/− mice also displayed markedly exacerbated disease progression and pathology in a T cell–dependent experimental autoimmune encephalomyelitis (EAE) model. However, disabling the complement system in Daf1−/− mice normalized T cell secretion of IFN-γ and IL-2 and attenuated disease severity in the EAE model. These findings establish a critical link between complement and T cell immunity and have implications for the role of DAF and complement in organ transplantation, tumor evasion, and vaccine development.


Leukemia ◽  
2021 ◽  
Author(s):  
Kinan Alhallak ◽  
Jennifer Sun ◽  
Katherine Wasden ◽  
Nicole Guenthner ◽  
Julie O’Neal ◽  
...  

AbstractT-cell-based immunotherapy, such as CAR-T cells and bispecific T-cell engagers (BiTEs), has shown promising clinical outcomes in many cancers; however, these therapies have significant limitations, such as poor pharmacokinetics and the ability to target only one antigen on the cancer cells. In multiclonal diseases, these therapies confer the development of antigen-less clones, causing tumor escape and relapse. In this study, we developed nanoparticle-based bispecific T-cell engagers (nanoBiTEs), which are liposomes decorated with anti-CD3 monoclonal antibodies (mAbs) targeting T cells, and mAbs targeting the cancer antigen. We also developed a nanoparticle that targets multiple cancer antigens by conjugating multiple mAbs against multiple cancer antigens for T-cell engagement (nanoMuTEs). NanoBiTEs and nanoMuTEs have a long half-life of about 60 h, which enables once-a-week administration instead of continuous infusion, while maintaining efficacy in vitro and in vivo. NanoMuTEs targeting multiple cancer antigens showed greater efficacy in myeloma cells in vitro and in vivo, compared to nanoBiTEs targeting only one cancer antigen. Unlike nanoBiTEs, treatment with nanoMuTEs did not cause downregulation (or loss) of a single antigen, and prevented the development of antigen-less tumor escape. Our nanoparticle-based immuno-engaging technology provides a solution for the major limitations of current immunotherapy technologies.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii472-iii472
Author(s):  
Mubeen Mosaheb ◽  
Daniel Landi ◽  
Elena Dobrikova ◽  
Michael Brown ◽  
Yuanfan Yang ◽  
...  

Abstract BACKGROUND H3 K27M-mutant diffuse midline glioma (DMG) is invariably lethal. Viruses naturally engage innate immunity, induce antigen presentation, and mediate CD8 T cell priming against foreign antigens. Polioviruses, in particular, are uniquely tropic for dendritic cells (DC) and potently activate DC, inducing Th1-dominant cytokine profiles, CD8 T cell immunity, and enhanced epitope presentation. Thus, poliovirus is ideally suited for vectored delivery of signature tumor neoantigens, e.g. the H3 K27M feature of DMG. However, poliovirus vector design is inherently limited by genetic instability and the underlying neuropathogenicity of poliovirus. METHODS We created a genetically stable, polio:rhinovirus chimera vector devoid of neuropathogenicity and modified for stable expression of the HLA-A2 restricted H3.3 K27M antigen (RIPO (H3.3)). RESULTS RIPO(H3.3) infects, activates, and induces H3.3K27M antigen presentation in DCs in vitro. Given intramuscularly in vivo, RIPO(H3.3) recruits and activates DCs with Th1-dominant cytokine profiles, efficiently primes H3.3K27M-specific CD8 T cells, induces antigen-specific CD8 T cell migration to the tumor site, delays tumor growth, and enhances survival in murine tumor models. CONCLUSION This novel approach leverages the unique ability of polioviruses to activate DCs while simultaneously introducing the H3.3 K27M antigen. In this way, DCs are activated optimally in situ, while being simultaneously infected to express/present tumor antigen. RIPO(H3.3), given by intramuscular injection, will be evaluated in a clinical trial for children with H3 K27M-mutant diffuse midline glioma.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Anna Cole ◽  
Guillermo Rangel RIvera ◽  
Aubrey Smith ◽  
Megan Wyatt ◽  
Brandon Ware ◽  
...  

BackgroundIL-21 enhances the anti-tumor capacity of adoptively transferred CD8+ T cells, while IL-2 and IL-15 impair T cell immunity by driving their expansion to a more differentiated status. Yet, these cytokines can act on many different immune cells. Given the potency of IL-21, we tested if this cytokine directly augments T cells or rather if it enhances other immune cells in the culture that indirectly improves T cell therapy.MethodsTo test this question, splenocytes from pmel-1 transgenic mice were used, as all CD8+ T cells express a transgenic TCR specific for tumor-antigen gp10025–33 overexpressed on melanoma. We then peptide activated naïve CD8+ T cells enriched or not from the spleen of pmel-1 mice and expanded them in the presence of IL-21 or IL-2 (10 ng/mL) for four days. Expanded pmel-1 from these various cultures were then restimulated with irradiated splenocytes pulsed with gp10025–33 and grown an additional seven days with IL-2 (10 ng/mL), irrespective of their initial cytokine condition. The in vitro memory phenotype, exhaustion profile, and cytokine secretion of these cultures were then assayed. Furthermore, mice bearing B16KVP melanoma tumors were infused with pmel-1 T cells expanded via these various approaches and compared for their relative capacity to engraft, persist, and regress tumor in vivo.ResultsInterestingly, we discovered that IL-21-treated T cells generated from bulk splenocytes are phenotypically and functionally distinct from IL-21-treated isolated T cells. Upon restimulation, IL-21-treated T cells from bulk splenocytes exhibited an exhausted phenotype that was like anergic IL-2-treated T cells. Moreover, few cells expressed CD62L but expressed heightened markers of suppression, including TIM3, PD-1, and EOMES. Moreover, they produced more effector molecules, including granzyme B and IFN-gamma. In vivo IL-21-treated T cells expanded from bulk splenocytes engrafted and persisted poorly, in turn mediating suboptimal regression of melanoma. Conversely, IL-21 dramatically bolstered the engraftment and antitumor activity of T cells only if they were first isolated from the spleen prior to their expansion and infusion into the animal.ConclusionsCollectively, our data shows that IL-21 may improve ACT therapy best when used directly on antitumor CD8+ T cells. Further studies will illuminate the mechanism behind this striking difference and determine whether other cell subsets reactive to IL-21 cause T cell dysfunction and/or reduced bioavailability. These findings are important for defining the best culture conditions in which to use IL-21 for ACT.AcknowledgementsWe would like to acknowledge Emory University, The Winship Cancer Institute, and the Pediatrics/Winship Flow Cytometry Core.Ethics ApprovalAll animal procedures were approved by the Institutional Animal Care and Use Committee of Emory University, protocol number 201900225.


2000 ◽  
Vol 278 (6) ◽  
pp. L1221-L1230 ◽  
Author(s):  
Holger Garn ◽  
Anke Friedetzky ◽  
Andrea Kirchner ◽  
Ruth Jäger ◽  
Diethard Gemsa

In chronic silicosis, mechanisms leading to lymphocyte activation are still poorly understood, although it is well known that not only the lung but also the draining lymph nodes are affected. In the present study, we investigated T-cell activation by analysis of cytokine expression in the enlarged thoracic lymph nodes of rats 2 mo after an 8-day silica aerosol exposure. In the case of helper T cell (Th) type 1 cytokines, we found a significant increase in interferon (IFN)-γ mRNA expression, whereas interleukin (IL)-2 expression remained unchanged. In contrast, gene transcription for the Th2-type cytokines IL-4 and IL-10 was diminished. In addition, with use of an in vitro lymphocyte-macrophage coculture system, an enhanced IFN-γ and a reduced IL-10 release were shown with cells from silicotic animals. With regard to IFN-γ-inducing cytokines, we observed enhanced IL-12 mRNA levels in vivo, whereas IL-18 gene expression was slightly decreased. These data indicate that a persistent shift toward an IFN-γ-dominated type 1 (Th1/cytotoxic T cell type 1) T-cell reaction pattern occurred within the thoracic lymph nodes of silicotic animals. Thus a mutual activation of lymphocytes and macrophages may maintain the chronic inflammatory changes that characterize silicosis.


Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1176-1183 ◽  
Author(s):  
Najib El Haddad ◽  
Dean Heathcote ◽  
Robert Moore ◽  
Sunmi Yang ◽  
Jamil Azzi ◽  
...  

Abstract Clinical trials using mesenchymal stem cells (MSCs) have been initiated worldwide. An improved understanding of the mechanisms by which allogeneic MSCs evade host immune responses is paramount to regulating their survival after administration. This study has focused on the novel role of serine protease inhibitor (SPI) in the escape of MSCs from host immunosurveillance through the inhibition of granzyme B (GrB). Our data indicate bone marrow–derived murine MSCs express SPI6 constitutively. MSCs from mice deficient for SPI6 (SPI6−/−) exhibited a 4-fold higher death rate by primed allogeneic cytotoxic T cells than did wild-type MSCs. A GrB inhibitor rescued SPI6−/− MSCs from cytotoxic T-cell killing. Transduction of wild-type MSCs with MigR1-SPI6 also protected MSCs from cytotoxic T cell–mediated death in vitro. In addition, SPI6−/− MSCs displayed a shorter lifespan than wild-type MSCs when injected into an allogeneic host. We conclude that SPI6 protects MSCs from GrB-mediated killing and plays a pivotal role in their survival in vivo. Our data could serve as a basis for future SPI-based strategies to regulate the survival and function of MSCs after administration and to enhance the efficacy of MSC-based therapy for diseases.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Ana Belén Carrillo-Gálvez ◽  
Juan Esteban Quintero ◽  
René Rodríguez ◽  
Sofía T. Menéndez ◽  
M. Victoria González ◽  
...  

AbstractSarcomas are mesenchymal cancers with poor prognosis, representing about 20% of all solid malignancies in children, adolescents, and young adults. Radio- and chemoresistance are common features of sarcomas warranting the search for novel prognostic and predictive markers. GARP/LRRC32 is a TGF-β-activating protein that promotes immune escape and dissemination in various cancers. However, if GARP affects the tumorigenicity and treatment resistance of sarcomas is not known. We show that GARP is expressed by human osteo-, chondro-, and undifferentiated pleomorphic sarcomas and is associated with a significantly worse clinical prognosis. Silencing of GARP in bone sarcoma cell lines blocked their proliferation and induced apoptosis. In contrast, overexpression of GARP promoted their growth in vitro and in vivo and increased their resistance to DNA damage and cell death induced by etoposide, doxorubicin, and irradiation. Our data suggest that GARP could serve as a marker with therapeutic, prognostic, and predictive value in sarcoma. We propose that targeting GARP in bone sarcomas could reduce tumour burden while simultaneously improving the efficacy of chemo- and radiotherapy.


2020 ◽  
Vol 217 (12) ◽  
Author(s):  
Isabelle C. Arnold ◽  
Mariela Artola-Boran ◽  
Alessandra Gurtner ◽  
Katrin Bertram ◽  
Michael Bauer ◽  
...  

The depletion of eosinophils represents an efficient strategy to alleviate allergic asthma, but the consequences of prolonged eosinophil deficiency for human health remain poorly understood. We show here that the ablation of eosinophils severely compromises antitumor immunity in syngeneic and genetic models of colorectal cancer (CRC), which can be attributed to defective Th1 and CD8+ T cell responses. The specific loss of GM-CSF signaling or IRF5 expression in the eosinophil compartment phenocopies the loss of the entire lineage. GM-CSF activates IRF5 in vitro and in vivo and can be administered recombinantly to improve tumor immunity. IL-10 counterregulates IRF5 activation by GM-CSF. CRC patients whose tumors are infiltrated by large numbers of eosinophils also exhibit robust CD8 T cell infiltrates and have a better prognosis than patients with eosinophillow tumors. The combined results demonstrate a critical role of eosinophils in tumor control in CRC and introduce the GM-CSF–IRF5 axis as a critical driver of the antitumor activities of this versatile cell type.


1990 ◽  
Vol 171 (5) ◽  
pp. 1815-1820 ◽  
Author(s):  
P Aichele ◽  
H Hengartner ◽  
R M Zinkernagel ◽  
M Schulz

Induction in vivo of antiviral cytotoxic T cell response was achieved in a MHC class I-dependent fashion by immunizing mice three times with a free unmodified 15-mer peptide derived from the nucleoprotein of lymphocytic choriomeningitis virus in IFA. The effector T cells are CD8+, restricted to the class I Ld allele of the analyzed mouse strain, and are specific both at the level of secondary restimulation in vitro and at the effector T cell level. These results suggest that cocktails of viral peptides may be used as antiviral T cell vaccines.


Blood ◽  
2003 ◽  
Vol 101 (4) ◽  
pp. 1469-1476 ◽  
Author(s):  
Sofia Buonocore ◽  
Frédéric Paulart ◽  
Alain Le Moine ◽  
Michel Braun ◽  
Isabelle Salmon ◽  
...  

Dendritic cells (DCs) genetically engineered to overexpress CD95 (Fas) ligand (CD95L-DC) were proposed as tools to induce peripheral tolerance to alloantigens. Herein, we observed that CD95L-DC obtained after retroviral gene transfer in bone marrow (BM) precursors derived from CD95-deficient (lpr/lpr) mice elicit much stronger allospecific type 1 helper T-cell and cytotoxic T-cell activities than control DCs upon injection in vivo, although they induce lower T-cell responses in vitro. Indeed, a single injection of CD95L-DC prepared from C57BL/6 mice was sufficient to prime bm13 recipients for acute rejection of C57BL/6 skin allografts that were otherwise tolerated in the context of this single weak major histocompatibility complex (MHC) class I incompatibility. Massive neutrophil infiltrates depending on interleukin (IL)–1 signaling were observed at sites of CD95L-DC injection. Experiments in IL-1 receptor–deficient mice or in animals injected with depleting anti-Gr1 monoclonal antibody (mAb) established that neutrophil recruitment is required for the development of vigorous T-cell responses after injection of CD95L-DC in vivo.


Sign in / Sign up

Export Citation Format

Share Document