scholarly journals Characterization of human FDCs reveals regulation of T cells and antigen presentation to B cells

2021 ◽  
Vol 218 (10) ◽  
Author(s):  
Balthasar A. Heesters ◽  
Kyah van Megesen ◽  
Ilhan Tomris ◽  
Robert P. de Vries ◽  
Giuliana Magri ◽  
...  

Stromal-derived follicular dendritic cells (FDCs) are essential for germinal centers (GCs), the site where B cells maturate their antibodies. FDCs present native antigen to B cells and maintain a CXCL13 gradient to form the B cell follicle. Yet despite their essential role, the transcriptome of human FDCs remains undefined. Using single-cell RNA sequencing and microarray, we provided the transcriptome of these enigmatic cells as a comprehensive resource. Key genes were validated by flow cytometry and microscopy. Surprisingly, marginal reticular cells (MRCs) rather than FDCs expressed B cell activating factor (BAFF). Furthermore, we found that human FDCs expressed TLR4 and can alter antigen availability in response to pathogen-associated molecular patterns (PAMPs). High expression of PD-L1 and PD-L2 on FDCs activated PD1 on T cells. In addition, we found expression of genes related to T cell regulation, such as HLA-DRA, CD40, and others. These data suggest intimate contact between human FDCs and T cells.

1981 ◽  
Vol 153 (1) ◽  
pp. 1-12 ◽  
Author(s):  
P K Mongini ◽  
K E Stein ◽  
W E Paul

The effect of T lymphocytes on the IgM, IgG3, IgG1, IgG2b, and IgG2a responses of B lymphocytes to the type-2 T-independent antigens, trinitrophenylated (TNP)-Ficoll, and TNP-Levan, was investigated. T cell-bearing nu/+ mice were found to produce substantially higher IgG2 serum anti-TNP antibody than their athymic counterparts, and nu/nu and nu/+ IgG2a titers exhibiting more disparity than nu/nu and nu/+ IgG2b titers. The Igm, IgG3, and IgG1 anti-TNP levels in nu/nu and nu/+ mice were indistinguishable. By cell transfer experiments, it was determined that this variance in nude and heterozygote IgG2 responses could not be explained by B cell differences between the two strains or by suppressive effects on IgG2 production within nu/nu mice. Rather, the difference was shown to be the result of the absence of T cells at the time B cells were responding to antigen. In the absence of T cells, the strength of the nu/nu anti-TNP antibody response was found to be in the following order: IgM > IgG3 > IgG1 > IgG2b > IgG2a, a heirarchy identical with the recently proposed heavy chain gene order. The possibilities that T cells influence IgG2 production via their specific recognition of IgG2-bearing B cells or via signals to increase heavy chain switching of responding B cell clones are discussed.


2020 ◽  
Author(s):  
Daniele Biasci ◽  
James Thaventhiran ◽  
Simon Tavaré

While the role of CD8+ T cells in mediating response to cancer immunotherapy is well established, the role of B cells remains more controversial (1–3). By conducting a large gene expression study of response to immune checkpoint inhibitors (ICI), we show that pre-treatment expression of B cell genes is associated with ICI response independently of CD8+ T cells. However, we discovered that such association can be completely explained by a single gene (FDCSP) expressed outside of the B cell compartment, in fibroblastic reticular cells (FRCs), which form the reticular network that facilitates interactions between B cells, T cells and cognate antigens (4–6) and are required to initiate efficient adaptive immune responses in secondary lymphoid organs (SLO) and tertiary lymphoid structures (TLS) (4, 7). We validated this finding in three independent cohorts of patients treated with ICI in melanoma and renal cell carcinoma. Taken together, these results suggest that FDCSP is an independent predictor of ICI response, thus opening new avenues to explain the mechanisms of resistance to cancer immunotherapy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1572-1572
Author(s):  
Xiaoxian Zhao ◽  
Bartlomiej Przychodzen ◽  
Juraj Bodo ◽  
Lisa Durkin ◽  
Daniel Lindner ◽  
...  

Introduction: Angioimmunoblastic T-cell lymphoma (AITL) is a rare and aggressive type of lymphoma that accounts for about 20% of peripheral T-cell lymphomas with a 5 year overall survival rate of 30%. As most patients relapse after anthracycline-containing regimens and newer agents such as histone deacetylase inhibitors, other novel therapeutic approaches are needed. Signaling lymphocytic activation molecule F7 (SLAMF7), a molecule expressed on a subset of T-cells, activated B cells and myeloma cells, is an attractive target to explore based on our previous studies showing SLAMF7 expression in a subset of AITL cases. The association of AITL with Epstein Barr virus (EBV) positive B-cells is nearly always present and the efficacy of treatment in such patients with significant EBV viral load is not well-understood. In this study, we performed the molecular characterization of an aggressive EBV+ AITL case, established a patient-derived xenograft (PDX) AITL model of coexisting T and B-cell proliferations and evaluated novel therapeutic strategies. Methods: Primary tumor cells were injected into a NSG mouse. Flow cytometry, immunohistochemistry (IHC), CISH-EBER and BIOMED 2 PCR based clonality studies were used to confirm the engraftment and compared the consistency of engrafted tumor cells with the primary sample. Genomic DNA extracted from sorted T and B cells and from paired normal neutrophils of the original patient were subjected to Whole Exome sequencing (WES). In vivo AITL PDX model trials were tested for the efficacy of romidepsin (Rom), elotuzumab (Elo), rituximab (Rit) and in combinations of these drugs. Results: A 53 year old woman with AITL was treated with 6 cycles of CHOEP followed by autologous stem cell transplantation. 3 months after transplantation (9 months after diagnosis) she developed progressive fatigue and arthralgias. PET-CT scan showed new cervical, thoracic, abdominal and pelvic lymphadenopathy. A cervical lymph node biopsy was performed to confirm relapse. IHC staining showed atypical T cells expressing CD2, CD3, CD4, CD5, CD7, CD10, BCL6, PD1, SLAMF7 and CXCL13. Scattered CD20+/EBER+ B-immunoblasts were present with focal large clusters/small sheets. Primary tumor cells engrafted in NSG mouse via tail vein injection caused splenomegaly. Flow cytometry assay demonstrated the engraftment of tumor cells in peripheral blood, bone marrow and spleen tissue. CD3+CD19- cells dominated the engrafted cells in all three tissues. Histologic examination and immunophenotyping (IHC and EBER staining) of spleen were consistent with primary tumor tissue. Engrafted tumor cells were capable of serial passage in NSG mice with an increasing malignant B cell percentage that mimics the situation in which the B-cell component masks an underlying T-cell lymphoma in humans. T-cell receptor gene rearrangement assay confirmed the clonal identity of engrafted T-cells matched the primary relapsed tumor. A clonal IGH rearrangement of engrafted B-cells was also detected, while no monoclonal B-cell population was detected in the relapsed AITL sample, possibly due to the low number of EBV+ B-cells present in that biopsy. WES of sorted malignant T-cells showed 33 mutants in 31genes, including RhoA G17V, TET2,STAT3 and VAV1, previously described in AITL or other T-cell lymphomas. In parallel WES assay, 9 mutations were found in 9 genes from sorted EBV+ B immunoblasts. A PDX model using cells harvested from the second passage showed single agent, Elo or Rit, extended the survival of mice compared to the control group (p < 0.05). Rom alone had no such effect (p = 0.27). Combination of Rit with either Elo or Rom further improved survival compared to each single agent exposed cohort (p < 0.05). There was no significant difference between Rit/Elo and Rit/Rom (p = 0.067). PARP cleavage by IHC was higher in the Rit/Rom and Rit/Elo groups compared to other cohorts. Expression of SLAMF7 in a subset of engrafted T and B cells of the control mouse were confirmed via flow cytometry assay. Conclusions: To date, this is the first molecular characterization of AITL tumor cells in comparison with associated EBV+ B cells and use of such a PDX model for therapeutic evaluation of agents targeting both malignant T and B cells simultaneously. The in vivo data support further clinical investigation of applying elotuzumab or romidepsin in combination with rituximab in AITL containing EBV-positive B-cell proliferations. Disclosures Maciejewski: Novartis: Consultancy; Alexion: Consultancy. Hsi:Abbvie: Research Funding; Eli Lilly: Research Funding; Jazz: Consultancy; Cleveland Clinic&Abbvie Biotherapeutics Inc: Patents & Royalties: US8,603,477 B2.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shi-hua Hu ◽  
Long-hui Zhang ◽  
Jie Gao ◽  
Jing-heng Guo ◽  
Xiao-dong Xun ◽  
...  

Numerous studies reported a small subpopulation of TCRαβ+CD4-CD8- (double-negative) T cells that exert regulatory functions in the peripheral lymphocyte population. However, the origin of these double-negative T (DNT) cells is controversial. Some researchers reported that DNT cells originated from the thymus, and others argued that these cells are derived from peripheral immune induction. We report a possible mechanism for the induction of nonregulatory CD4+ T cells to become regulatory double-negative T (iDNT) cells in vitro. We found that immature bone marrow dendritic cells (CD86+MHC-II- DCs), rather than mature DCs (CD86+MHC-II+), induced high levels of iDNT cells. The addition of an anti-MHC-II antibody to the CD86+MHC-II+ DC group significantly increased induction. These iDNT cells promoted B cell apoptosis and inhibited B cell proliferation and plasma cell formation. A subgroup of iDNT cells expressed NKG2D. Compared to NKG2D- iDNT cells, NKG2D+ iDNT cells released more granzyme B to enhance B cell regulation. This enhancement may function via NKG2D ligands expressed on B cells following lipopolysaccharide stimulation. These results demonstrate that MHC-II impedes induction, and iDNT cells may be MHC independent. NKG2D expression on iDNT cells enhanced the regulatory function of these cells. Our findings elucidate one possible mechanism of the induction of peripheral immune tolerance and provide a potential treatment for chronic allograft rejection in the future.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3278-3278
Author(s):  
Stefanie Lindner ◽  
Karen Dahlke ◽  
Kai Sontheimer ◽  
Magdalena Hagn ◽  
Christof Kaltenmeier ◽  
...  

Abstract Abstract 3278 The role of B cells in tumor infiltrations is controversial. Different studies suggest that certain tumor-infiltrating B cell populations exhibit regulatory potential. Here, we demonstrate that the microenvironment of various solid tumors contains granzyme B (GrB)-expressing B cells adjacent to IL-21-providing T cells. GrB-mediated effector T cell modulation is already known from regulatory T cells (Treg) and plasmacytoid dendritic cells. We now show that IL-21 induces B cells to express high levels of GrB and to modulate T cell proliferation by GrB-dependent degradation of the T cell receptor z-chain. Detailed characterization of IL-21-induced GrB+ B cells reveals a CD19+CD38+CD1d+CD147+ phenotype and expression of additional regulatory molecules including IL-10, IDO and CD25. Of note, GrB induction is accompanied by both BCR- and TLR-mediated signals and GrB expression levels are influenced by B cell expression of CD5. In summary, we demonstrate that IL-21 induces GrB-expressing regulatory B cells, which are detected in tumor infiltrations, and which may contribute to the modulation of cellular adaptive immune responses by Treg-like mechanisms. Our findings may stimulate the development of novel diagnostic and cell therapeutic approaches to the management of malignant, autoimmune and graft-versus-host pathologies. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 5 (2) ◽  
pp. e432 ◽  
Author(s):  
Maryam Nakhaei-Nejad ◽  
David Barilla ◽  
Chieh-Hsin Lee ◽  
Gregg Blevins ◽  
Fabrizio Giuliani

Objective:Lymphopenia is a common occurrence of disease-modifying therapies (DMTs) for relapsing-remitting MS (RRMS). The aim of this study was to dissect the prevalence of various lymphocyte subsets in patients with RRMS treated with 2 DMTs commonly associated with lymphopenia, dimethyl fumarate (DMF), and fingolimod (FTY).Methods:Multicolor flow cytometry and multiplex assays were used to identify up to 50 lymphocyte subpopulations and to examine the expression of multiple cytokines in selected patients. We compared patients untreated (NT) or treated with FTY or DMF who did (DMF-L) or did not (DMF-N) develop lymphopenia.Results:All FTY patients developed lymphopenia in both T-cell and B-cell compartments. CD41 T cells were more affected by this treatment than CD81 cells. In the B-cell compartment, the CD271IgD2 subpopulation was reduced. T cells but not B cells were significantly reduced in DMF-L. However, within the B cells, CD271 cells were significantly lower. Both CD41 and CD81 subpopulations were reduced in DMF-L. Within the remaining CD41 and CD81 compartments, there was an expansion of the naive subpopulation and a reduction of the effector memory subpopulation. Unactivated lymphocyte from DMF-L patients had significantly higher levels of interferon-γ, interleukin (IL)-12, IL-2, IL-4, IL-6, and IL-1β compared with DMF-N. In plasma, TNFβ was significantly higher in DMF-N and DMF-L compared with NT, whereas CCL17 was significantly higher in DMF-L compared with NT and DMF-N.Conclusions:This study shows that different treatments can target different lymphocyte compartments and suggests that lymphopenia can induce compensatory mechanisms to maintain immune homeostasis.


2014 ◽  
Vol 17 (3) ◽  
pp. 421-426 ◽  
Author(s):  
B. Tokarz-Deptuła ◽  
P. Niedźwiedzka-Rystwej ◽  
B. Hukowska-Szematowicz ◽  
M. Adamiak ◽  
A. Trzeciak-Ryczek ◽  
...  

Abstract In Poland, rabbit is a highly valued animal, due to dietetic and flavour values of its meat, but above all, rabbits tend to be commonly used laboratory animals. The aim of the study was developing standards for counts of B-cells with CD19+ receptor, T-cells with CD5+ receptor, and their subpopulations, namely T-cells with CD4+, CD8+ and CD25+ receptor in the peripheral blood of mixed-breed Polish rabbits with addition of blood of meet breeds, including the assessment of the impact of four seasons of the year and animal sex on the values of the immunological parameters determined. The results showed that the counts of B- and T-cells and their subpopulations in peripheral blood remain within the following ranges: for CD19+ B-cells: 1.05 - 3.05%, for CD5+ T-cells: 34.00 - 43.07%, CD4+ T-cells: 23.52 - 33.23%, CD8+ T-cells: 12.55 - 17.30%, whereas for CD25+ T-cells: 0.72 - 2.81%. As it comes to the season of the year, it was observed that it principally affects the values of CD25+ T-cells, while in the case of rabbit sex, more changes were found in females.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2901-2908 ◽  
Author(s):  
Asimah Rafi ◽  
Mitzi Nagarkatti ◽  
Prakash S. Nagarkatti

Abstract CD44 is a widely distributed cell surface glycoprotein whose principal ligand has been identified as hyaluronic acid (HA), a major component of the extracellular matrix (ECM). Recent studies have demonstrated that activation through CD44 leads to induction of effector function in T cells and macrophages. In the current study, we investigated whether HA or monoclonal antibodies (MoAbs) against CD44 would induce a proliferative response in mouse lymphocytes. Spleen cells from normal and nude, but not severe combined immunodeficient mice, exhibited strong proliferative responsiveness to stimulation with soluble HA or anti-CD44 MoAbs. Furthermore, purified B cells, but not T cells, were found to respond to HA. HA was unable to stimulate T cells even in the presence of antigen presenting cells (APC) and was unable to act as a costimulus in the presence of mitogenic or submitogenic concentrations of anti-CD3 MoAbs. In contrast, stimulation of B cells with HA in vitro, led to B-cell differentiation as measured by production of IgM antibodies in addition to increased expression of CD44 and decreased levels of CD45R. The fact that the B cells were responding directly to HA through its binding to CD44 and not to any contaminants or endotoxins was demonstrated by the fact that F(ab)2 fragments of anti-CD44 MoAbs or soluble CD44 fusion proteins could significantly inhibit the HA-induced proliferation of B cells. Also, HA-induced proliferation of B cells was not affected by the addition of polymixin B, and B cells from lipopolysaccharide (LPS)-unresponsive C3H/HeJ strain responded strongly to stimulation with HA. Furthermore, HA, but not chondroitin-sulfate, another major component of the ECM, induced B-cell activation. It was also noted that injection of HA intraperitoneally, triggered splenic B cell proliferation in vivo. Together, the current study demonstrates that interaction between HA and CD44 can regulate murine B-cell effector functions and that such interactions may play a critical role during normal or autoimmune responsiveness of B cells.


2021 ◽  
pp. annrheumdis-2021-220435
Author(s):  
Theresa Graalmann ◽  
Katharina Borst ◽  
Himanshu Manchanda ◽  
Lea Vaas ◽  
Matthias Bruhn ◽  
...  

ObjectivesThe monoclonal anti-CD20 antibody rituximab is frequently applied in the treatment of lymphoma as well as autoimmune diseases and confers efficient depletion of recirculating B cells. Correspondingly, B cell-depleted patients barely mount de novo antibody responses during infections or vaccinations. Therefore, efficient immune responses of B cell-depleted patients largely depend on protective T cell responses.MethodsCD8+ T cell expansion was studied in rituximab-treated rheumatoid arthritis (RA) patients and B cell-deficient mice on vaccination/infection with different vaccines/pathogens.ResultsRituximab-treated RA patients vaccinated with Influvac showed reduced expansion of influenza-specific CD8+ T cells when compared with healthy controls. Moreover, B cell-deficient JHT mice infected with mouse-adapted Influenza or modified vaccinia virus Ankara showed less vigorous expansion of virus-specific CD8+ T cells than wild type mice. Of note, JHT mice do not have an intrinsic impairment of CD8+ T cell expansion, since infection with vaccinia virus induced similar T cell expansion in JHT and wild type mice. Direct type I interferon receptor signalling of B cells was necessary to induce several chemokines in B cells and to support T cell help by enhancing the expression of MHC-I.ConclusionsDepending on the stimulus, B cells can modulate CD8+ T cell responses. Thus, B cell depletion causes a deficiency of de novo antibody responses and affects the efficacy of cellular response including cytotoxic T cells. The choice of the appropriate vaccine to vaccinate B cell-depleted patients has to be re-evaluated in order to efficiently induce protective CD8+ T cell responses.


Blood ◽  
1996 ◽  
Vol 87 (2) ◽  
pp. 465-471 ◽  
Author(s):  
B Falini ◽  
B Bigerna ◽  
L Pasqualucci ◽  
M Fizzotti ◽  
MF Martelli ◽  
...  

The BCL-6 gene encoding a nuclear-located Kruppel-type zinc finger protein is rearranged in about 30% diffuse large B-cell lymphomas and is expressed predominantly in normal germinal center B cells and related lymphomas. These findings suggest that BCL-6 may play a role in regulating differentiation of normal germinal center B cells and that its deregulated expression caused by rearrangements may contribute to lymphomagenesis. This prompted us to investigate the expression of the BCL-6 protein in Hodgkin's disease (HD), focusing on the nodular lymphocyte predominance subtype (NLPHD), which differs from classical HD by virtue of the B-cell nature of the malignant cell population (so- called L&H cells) and its relationship with germinal centers. Forty-one HD samples (19 NLPHD, 12 nodular sclerosis, and 10 mixed cellularity) were immunostained with the monoclonal antibodies PG-B6 and PG-B6p that react with a fixative-sensitive and a formalin-resistant epitope on the aminoterminal region of the BCL-6 gene product, respectively. Strong nuclear positivity for the BCL-6 protein was detected in tumor (L&H) cells in all cases of NLPHD. In contrast, BCL-6 was expressed only in a small percentage of Hodgkin and Reed-Sternberg cells in about 30% of classical HD cases. Notably, the nuclei of reactive CD3+/CD4+ T cells nearby to and rosetting around L&H cells in NLPHD were also strongly BCL-6+, but lacked CD40 ligand (CD40L) expression. This staining pattern clearly differed from that of classical HD, whose cellular background was made up of CD3+/CD4+ T cells showing the BCL-6-/CD40L+ phenotype. These results further support the concept that NLPHD is an histogenetically distinct, B-cell-derived subtype of HD and suggest a role for BCL-6 in its development.


Sign in / Sign up

Export Citation Format

Share Document