scholarly journals AMPHOTERIC COLLOIDS

1919 ◽  
Vol 1 (3) ◽  
pp. 363-385 ◽  
Author(s):  
Jacques Loeb

1. The method of removing the excess of hydrobromic acid after it has had a chance to react chemically with gelatin has permitted us to measure the amount of Br in combination with the gelatin. It is shown that the curves representing the amount of bromine bound by the gelatin are approximately parallel with the curves for the osmotic pressure, the viscosity, and swelling of the gelatin solution. This proves that the curves for osmotic pressure are an unequivocal function of the number of gelatin bromide molecules formed under the influence of the acid. The cc. of 0.01 N Br in combination with 0.25 gm, of gelatin we call the bromine number. 2. The explanation of this influence of the acid on the physical properties of gelatin is based on the fact that gelatin is an amphoteric electrolyte, which at its isoelectric point is but sparingly soluble in water, while its transformation into a salt with a univalent anion like gelatin Br makes it soluble. The curve for the bromine number thus becomes at the same time the numerical expression for the number of gelatin molecules rendered soluble, and hence the curve for osmotic pressure must of necessity be parallel to the curve for the bromine number. 3. Volumetric analysis shows that gelatin treated previously with HBr is free from Br at the isoelectric point as well as on the more alkaline side from the isoelectric point (pH ≧ 4.7) of gelatin. This is in harmony with the fact that gelatin (like any other amphoteric electrolyte) can dissociate on the alkaline side of its isoelectric point only as an anion. On the more acid side from the isoelectric point gelatin is found to be in combination with Br and the Br number rises with the pH. 4. When we titrate gelatin, treated previously with HBr but possessing a pH = 4,7, with NaOH we find that 25 cc. of a 1 per cent solution of isoelectric gelatin require about 5.25 to 5.5 cc. of 0.01 N NaOH for neutralization (with phenolphthalein as an indicator). This value which was found invariably is therefore a constant which we designate as "NaOH (isoelectric)." When we titrate 0.25 gm. of gelatin previously treated with HBr but possessing a pH < 4.7 more than 5.5 cc. of 0.01 N NaOH are required for neutralization. We will designate this value of NaOH as "(NaOH)n," where n represents the value of pH. If we designate the bromine number for the same pH as "Brn" then we can show that the following equation is generally true: (NaOH)n = NaOH (isoelectric) + Brn. In other words, titration with NaOH of gelatin (previously treated with HBr) and being on the acid side of its isoelectric point results in the neutralization of the pure gelatin (NaOH isoelectric) with NaOH and besides in the neutralization of the HBr in combination with the gelatin. This HBr is set free as soon as through the addition of the NaOH the pH of the gelatin solution becomes equal to 4.7. 5. A comparison between the pH values and the bromine numbers found shows that over 90 per cent of the bromine or HBr found was in our experiments in combination with the gelatin.

1920 ◽  
Vol 2 (3) ◽  
pp. 273-296 ◽  
Author(s):  
Jacques Loeb

1. When a 1 per cent solution of a metal gelatinate, e.g. Na gelatinate, of pH = 8.4 is separated from distilled water by a collodion membrane, water will diffuse into the solution with a certain rate which can be measured by the rise of the level of the liquid in a manometer. When to such a solution alkali or neutral salt is added the initial rate with which water will diffuse into the solution is diminished and the more so the more alkali or salt is added. This depressing effect of the addition of alkali and neutral salt is greater when the cation of the electrolyte added is bivalent than when it is monovalent. This seems to indicate that the depressing effect is due to the cation of the electrolyte added. 2. When a neutral M/256 solution of a salt with monovalent cation (e.g. Na2SO4 or K4Fe(CN)6, etc.) is separated from distilled water by a collodion membrane, water will diffuse into the solution with a certain initial rate. When to such a solution alkali or neutral salt is added, the initial rate with which water will diffuse into the solution is diminished and the more so the more alkali or salt is added. The depressing effect of the addition of alkali or neutral salt is greater when the cation of the electrolyte added is bivalent than when it is monovalent. This seems to indicate that the depressing effect is due to the cation of the electrolyte added. The membranes used in these experiments were not treated with gelatin. 3. It can be shown that water diffuses through the collodion membrane in the form of positively charged particles under the conditions mentioned in (1) and (2). In the case of diffusion of water into a neutral solution of a salt with monovalent or bivalent cation the effect of the addition of electrolyte on the rate of diffusion can be explained on the basis of the influence of the ions on the electrification and the rate of diffusion of electrified particles of water. Since the influence of the addition of electrolyte seems to be the same in the case of solutions of metal gelatinate, the question arises whether this influence of the addition of electrolyte cannot also be explained in the same way, and, if this be true, the further question can be raised whether this depressing effect necessarily depends upon the colloidal character of the gelatin solution, or whether we are not dealing in both cases with the same property of matter; namely, the influence of ions on the electrification and rate of diffusion of water through a membrane. 4. It can be shown that the curve representing the influence of the concentration of electrolyte on the initial rate of diffusion of water from solvent into the solution through the membrane is similar to the curve representing the permanent osmotic pressure of the gelatin solution. The question which has been raised in (3) should then apply also to the influence of the concentration of ions upon the osmotic pressure and perhaps other physical properties of gelatin which depend in a similar way upon the concentration of electrolyte added; e.g., swelling. 5. When a 1 per cent solution of a gelatin-acid salt, e.g. gelatin chloride, of pH 3.4 is separated from distilled water by a collodion membrane, water will diffuse into the solution with a certain rate. When to such a solution acid or neutral salt is added—taking care in the latter case that the pH is not altered—the initial rate with which water will diffuse into the solution is diminished and the more so the more acid or salt is added. Water diffuses into a gelatin chloride solution through a collodion membrane in the form of negatively charged particles. 6. When we replace the gelatin-acid salt by a crystalloidal salt, which causes the water to diffuse through the collodion membrane in the form of negatively charged particles, e.g. M/512 Al2Cl6, we find that the addition of acid or of neutral salt will diminish the initial rate with which water diffuses into the M/512 solution of Al2Cl6, in a similar way as it does in the case of a solution of a gelatin-acid salt.


1918 ◽  
Vol 1 (2) ◽  
pp. 237-254 ◽  
Author(s):  
Jacques Loeb

1. It is shown by volumetric analysis that on the alkaline side from its isoelectric point gelatin combines with cations only, but not with anions; that on the more acid side from its isoelectric point it combines only with anions but not with cations; and that at the isoelectric point, pH = 4.7, it combines with neither anion nor cation. This confirms our statement made in a previous paper that gelatin can exist only as an anion on the alkaline side from its isoelectric point and only as a cation on the more acid side of its isoelectric point, and practically as neither anion nor cation at the isoelectric point. 2. Since at the isoelectric point gelatin (and probably amphoteric colloids generally) must give off any ion with which it was combined, the simplest method of obtaining amphoteric colloids approximately free from ionogenic impurities would seem to consist in bringing them to the hydrogen ion concentration characteristic of their isoelectric point (i.e., at which they migrate neither to the cathode nor anode of an electric field). 3. It is shown by volumetric analysis that when gelatin is in combination with a monovalent ion (Ag, Br, CNS), the curve representing the amount of ion-gelatin formed is approximately parallel to the curve for swelling, osmotic pressure, and viscosity. This fact proves that the influence of ions upon these properties is determined by the chemical or stoichiometrical and not by the "colloidal" condition of gelatin. 4. The sharp drop of these curves at the isoelectric point finds its explanation in an equal drop of the water solubility of pure gelatin, which is proved by the formation of a precipitate. It is not yet possible to state whether this drop of the solubility is merely due to lack of ionization of the gelatin or also to the formation of an insoluble tautomeric or polymeric compound of gelatin at the isoelectric point. 5. On account of this sudden drop slight changes in the hydrogen ion concentration have a considerably greater chemical and physical effect in the region of the isoelectric point than at some distance from this point. This fact may be of biological significance since a number of amphoteric colloids in the body seem to have their isoelectric point inside the range of the normal variation of the hydrogen ion concentration of blood, lymph, or cell sap. 6. Our experiments show that while a slight change in the hydrogen ion concentration increases the water solubility of gelatin near the isoelectric point, no increase in the solubility can be produced by treating gelatin at the isoelectric point with any other kind of monovalent or polyvalent ion; a fact apparently not in harmony with the adsorption theory of colloids, but in harmony with a chemical conception of proteins.


1919 ◽  
Vol 1 (4) ◽  
pp. 483-504 ◽  
Author(s):  
Jacques Loeb

1. A method is given by which the amount of equivalents of metal in combination with 1 gm. of a 1 per cent gelatin solution previously treated with an alkali can be ascertained when the excess of alkali is washed away and the pH is determined. The curves of metal equivalent in combination with 1 gm. of gelatin previously treated with different concentrations of LiOH, NaOH, KOH, NH4OH, Ca(OH)2, and Ba(OH)2 were ascertained and plotted as ordinates, with the pH of the solution as abscissæ, and were found to be identical. This proves that twice as many univalent as bivalent cations combine with the same mass of gelatin, as was to be expected. 2. The osmotic pressure of 1 per cent solutions of metal gelatinates with univalent and bivalent cation was measured. The curves for the osmotic pressure of 1 per cent solution of gelatin salts of Li, Na, K, and NH4 were found to be identical when plotted for pH as abscissæ, tending towards the same maximum of a pressure of about 325 mm. of the gelatin solution (for pH about 7.9). The corresponding curves for Ca and Ba gelatinate were also found to be identical but different from the preceding ones, tending towards a maximum pressure of about 125 mm. for pH about 7.0 or above. The ratio of maxi mal osmotic pressure for the two groups of gelatin salts is therefore about as 1:3 after the necessary corrections have been made. 3. When the conductivities of these solutions are plotted as ordinates against the pH as abscissæ, the curves for the conductivities of Li, Na, Ca, and Ba gelatinate are almost identical (for the same pH), while the curves for the conductivities of K and NH4 gelatinate are only little higher. 4. The curves for the viscosity and swelling of Ba (or Ca) and Na gelatinate are approximately parallel to those for osmotic pressure. 5. The practical identity or close proximity of the conductivities of metal gelatinates with univalent and bivalent metal excludes the possibility that the differences observed in the osmotic pressure, viscosity, and swelling between metal gelatinates with univalent and bivalent metal are determined by differences in the degree of ionization (and a possible hydratation of the protein ions). 6. Another, as yet tentative, explanation is suggested.


1924 ◽  
Vol 6 (4) ◽  
pp. 457-462 ◽  
Author(s):  
David I. Hitchcock

Measurements have been made at 40°C. of the osmotic pressure and viscosity of 1 per cent gelatin solutions containing varying amounts of hydrochloric acid or sodium hydroxide. Each property was found to exhibit a decided minimum near pH 4.7. In the osmotic pressure experiments the pH of the inside solutions was greater than that of the outside solutions at pH values below 4.7, while it was less than that of the outside solutions at values above pH 4.7. These results indicate that gelatin at 40°C. retains its isoelectric point at about pH 4.7.


1918 ◽  
Vol 1 (1) ◽  
pp. 39-60 ◽  
Author(s):  
Jacques Loeb

1. It has been shown in this paper that while non-ionized gelatin may exist in gelatin solutions on both sides of the isoelectric point (which lies for gelatin at a hydrogen ion concentration of CH = 2.10–5 or pH = 4.7), gelatin, when it ionizes, can only exist as an anion on the less acid side of its isoelectric point (pH > 4.7), as a cation only on the more acid side of its isoelectric point (pH < 4.7). At the isoelectric point gelatin can dissociate practically neither as anion nor as cation. 2. When gelatin has been transformed into sodium gelatinate by treating it for some time with M/32 NaOH, and when it is subsequently treated with HCl, the gelatin shows on the more acid side of the isoelectric point effects of the acid treatment only; while the effects of the alkali treatment disappear completely, showing that the negative gelatin ions formed by the previous treatment with alkali can no longer exist in a solution with a pH < 4.7. When gelatin is first treated with acid and afterwards with alkali on the alkaline side of the isoelectric point only the effects of the alkali treatment are noticeable. 3. On the acid side of the isoelectric point amphoteric electrolytes can only combine with the anions of neutral salts, on the less acid side of their isoelectric point only with cations; and at the isoelectric point neither with the anion nor cation of a neutral salt. This harmonizes with the statement made in the first paragraph, and the experimental results on the effect of neutral salts on gelatin published in the writer's previous papers. 4. The reason for this influence of the hydrogen ion concentration on the stability of the two forms of ionization possible for an amphoteric electrolyte is at present unknown. We might think of the possibility of changes in the configuration or constitution of the gelatin molecule whereby ionized gelatin can exist only as an anion on the alkaline side and as a cation on the acid side of its isoelectric point. 5. The literature of colloid chemistry contains numerous statements which if true would mean that the anions of neutral salts act on gelatin on the alkaline side of the isoelectric point, e.g. the alleged effect of the Hofmeister series of anions on the swelling and osmotic pressure of common gelatin in neutral solutions, and the statement that both ions of a neutral salt influence a protein simultaneously. The writer has shown in previous publications that these statements are contrary to fact and based on erroneous methods of work. Our present paper shows that these claims of colloid chemists are also theoretically impossible. 6. In addition to other physical properties the conductivity of gelatin previously treated with acids has been investigated and plotted, and it was found that this conductivity is a minimum in the region of the isoelectric point, thus confirming the conclusion that gelatin can apparently not exist in ionized condition at that point. The conductivity rises on either side of the isoelectric point, but not symmetrically for reasons given in the paper. It is shown that the curves for osmotic pressure, viscosity, swelling, and alcohol number run parallel to the curve of the conductivity of gelatin when the gelatin has been treated with acid, supporting the view that these physical properties are in this case mainly or exclusively a function of the degree of ionization of the gelatin or gelatin salt formed. It is pointed out, however, that certain constitutional factors, e.g. the valency of the ion in combination with the gelatin, may alter the physical properties of the gelatin (osmotic pressure, etc.) without apparently altering its conductivity. This point is still under investigation and will be further discussed in a following publication. 7. It is shown that the isoelectric point of an amphoteric electrolyte is not only a point where the physical properties of an ampholyte experience a sharp drop and become a minimum, but that it is also a turning point for the mode of chemical reactions of the ampholyte. It may turn out that this chemical influence of the isoelectric point upon life phenomena overshadows its physical influence. 8. These experiments suggest that the theory of amphoteric colloids is in its general features identical with the theory of inorganic hydroxides (e.g. aluminum hydroxide), whose behavior is adequately understood on the basis of the laws of general chemistry.


1928 ◽  
Vol 11 (6) ◽  
pp. 823-841 ◽  
Author(s):  
William R. Amberson ◽  
Henry Klein

The production of concentration P.D.'s across the skin of the frog is very intimately related to the pH of the applied solutions. On the alkaline side of an isoelectric point the dilute solution is electropositive; on the acid side this solution becomes electronegative. When the pH is suddenly lowered from a value more alkaline than this isoelectric point to one considerably more acid the change in polarity may occur within a few seconds. The effect is reversible. When a series of unbuffered solutions at different pH values are applied reversal curves may be obtained. When the concentration gradient is .1 N-.001 N KCl the reversal points lie between pH 4.1 and 4.8. When studied in acetate buffers this electromotive reversal is found to be closely correlated with the electrical charge upon the membrane, as determined by electroendosmosis through it. Reversal occurs between pH 4.9 and 5.2. It is concluded that the electromotive behavior of this material is controlled by some ampholyte, or group of ampholytes, within the membrane. This ampholyte is probably a protein. On both sides of their isoelectric point these membranes, in common with protein membranes, behave as if they retarded or prevented the movement through them of ions of the same electrical sign as they themselves bear, while permitting the movement of ions of the opposite sign. It is suggested that this correlation arises because of electrostatic effects between the charged surfaces and ions in the solution.


1921 ◽  
Vol 3 (3) ◽  
pp. 309-323 ◽  
Author(s):  
Calvin B. Coulter

1. The movement of normal and sensitized red blood cells in the electric field is a function of the hydrogen ion concentration. The isoelectric point, at which no movement occurs, corresponds with pH 4.6. 2. On the alkaline side of the isoelectric point the charge carried is negative and increases with the alkalinity. On the acid side the charge is positive and increases with the acidity. 3. On the alkaline side at least the charge carried by sensitized cells is smaller and increases less rapidly with the alkalinity than the charge of normal cells. 4. Both normal and sensitized cells combine chemically with inorganic ions, and the isoelectric point is a turning point for this chemical behavior. On the acid side the cells combine with the hydrogen and chlorine ions, and in much larger amount than on the alkaline side; on the alkaline side the cells combine with a cation (Ba), and in larger amount than on the acid side. This behavior corresponds with that found by Loeb for gelatin. 5. The optimum for agglutination of normal cells is at pH 4.75, so that at this point the cells exist most nearly pure, or least combined with anion and cation. 6. The optimum for agglutination of sensitized cells is at pH 5.3. This point is probably connected with the optimum for flocculation of the immune serum body.


1931 ◽  
Vol 14 (5) ◽  
pp. 643-660 ◽  
Author(s):  
Danella Straup

The results of this investigation show that a gelatin solution consists of a considerable number of constituents. At a particular temperature, certain gelatin constituents tend to aggregate and to flocculate from solution. When these particular gelatin constituents have completely flocculated, no further change occurs in the system and an apparent equilibrium exists. This is not a dynamic equilibrium between the gelatin flocculate as a whole and the gelatin remaining in the solution but a steady state determined for that system by the temperature. It is also shown that gelatin can be separated into fractions in which the gelatin constituents are more nearly uniform and tend to flocculate over a much narrower temperature range. It should be possible to obtain a number of fractions in which all of the gelatin would flocculate at a definite temperature. The aggregation of the various gelatin constituents is presumably due to loss of thermal energy, and the temperature at which this occurs must be some function of the mass of the constituent. It is natural to assume, then, that the constituents which flocculate at a given temperature are larger than those which remain in solution at that temperature. Recently, Krishnamurti and Svedberg (1930) have obtained evidence with the ultra-centrifuge that the constituents of a gelatin solution are heterogeneous as to mass, even at a pH value at which there is no tendency toward aggregation. There is much reason to suppose that the gelatin constituents do not differ very greatly chemically since different fractions have the same refractive index and the same isoelectric point. The data as a whole are best explained by considering the gelatin constituents to be different degrees of association of the same or very similar molecular structural units. This is in agreement with Sheppard and Houck (1930), who consider that "the molecules of gelatin are fundamentally identical with those of collagen, the difference being only in the degree of association and orientation". Meyer and Mark (1928) have interpreted the x-ray data obtained from collagen as indicating that the micelles of the collagen fiber are built up of main valency chains of anhydro-amino acids. It may be supposed that during peptization of these fibers, the amino acid chains become separated, disorientated, and partially broken up, so producing the heterogeneous system which we know as gelatin. It is evident that the manner in which this breaking-up proceeds depends upon the chemical treatment previous to the peptization process and the gelatin produced from lime-treated collagen would be expected to differ from that from acid-treated collagen. From the results herein reported it seems evident that the technique of isoelectric flocculation of electrolyte-free gelatin offers a profitable method for the study of gelatin and an extended investigation along these lines should yield much valuable information concerning the nature of gelatin. It is possible that this method may also be extended to other hydrophilic colloids.


1936 ◽  
Vol 19 (6) ◽  
pp. 907-916 ◽  
Author(s):  
Philip Dow

An experimental study has been made of the adsorption of purified egg albumin, from aqueous solution, on collodion membranes. At protein concentrations of 4 to 7 per cent apparent saturation values were obtained which resembled closely the results obtained with gelatin, showing a maximum at pH 5.0 and lower values on either side of this region. Over large ranges of protein concentration, however, the curves for the adsorption from solutions removed in either direction from the isoelectric point exhibited a different shape from the hyperbola obtained in the neighborhood of pH 5.0. The addition of NaCl to solutions on the acid side tended to obliterate the effect of the pH difference; on the alkaline side it greatly increased the adsorption. The adsorption at 25° was about twice as great as that at 1°. The theory of the swelling of submicroscopic particles, advanced to account for the adsorption behavior of gelatin, is not sufficient to explain the results obtained with egg albumin. It is suggested that the effect is related to alterations in the forces causing the retention of the protein on the membranes.


1920 ◽  
Vol 2 (3) ◽  
pp. 255-271 ◽  
Author(s):  
Jacques Loeb

1. It is shown that collodion membranes which have received one treatment with a 1 per cent gelatin solution show for a long time (if not permanently) afterwards a different osmotic behavior from collodion membranes not treated with gelatin. This difference shows itself only towards solutions of those electrolytes which have a tendency to induce a negative electrification of the water particles diffusing through the membrane, namely solutions of acids, acid salts, and of salts with trivalent and tetravalent cations; while the osmotic behavior of the two types of membranes towards solutions of salts and alkalies, which induce a positive electrification of the water particles diffusing through the membrane, is the same. 2. When we separate solutions of salts with trivalent cation, e.g. LaCl3 or AlCl3, from pure water by a collodion membrane treated with gelatin, water diffuses rapidly into the solution; while no water diffuses into the solution when the collodion membrane has received no gelatin treatment. 3. When we separate solutions of acid from pure water by a membrane previously treated with gelatin, negative osmosis occurs; i.e., practically no water can diffuse into the solution, while the molecules of solution and some water diffuse out. When we separate solutions of acid from pure water by collodion membranes not treated with gelatin, positive osmosis will occur; i.e., water will diffuse rapidly into the solution and the more rapidly the higher the valency of the anion. 4. These differences occur only in that range of concentrations of electrolytes inside of which the forces determining the rate of diffusion of water through the membrane are predominantly electrical; i.e., in concentrations from 0 to about M/16. For higher concentrations of the same electrolytes, where the forces determining the rate of diffusion are molecular, the osmotic behavior of the two types of membranes is essentially the same. 5. The differences in the osmotic behavior of the two types of membranes are not due to differences in the permeability of the membranes for solutes since it is shown that acids diffuse with the same rate through both kinds of membranes. 6. It is shown that the differences in the osmotic behavior of the two types of collodion membranes towards solutions of acids and of salts with trivalent cation are due to the fact that in the presence of these electrolytes water diffuses in the form of negatively charged particles through the membranes previously treated with gelatin, and in the form of positively charged particles through collodion membranes not treated with gelatin. 7. A treatment of the collodion membranes with casein, egg albumin, blood albumin, or edestin affects the behavior of the membrane towards salts with trivalent or tetravalent cations and towards acids in the same way as does a treatment with gelatin; while a treatment of the membranes with peptone prepared from egg albumin, with alanine, or with starch has no such effect.


Sign in / Sign up

Export Citation Format

Share Document